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Preface 

In recent years, the progress in hardware technology has made it possible 
for organizations to store and record large streams of transactional data. Such 
data sets which continuously and rapidly grow over time are referred to as data 
streams. In addition, the development of sensor technology has resulted in 
the possibility of monitoring many events in real time. While data mining has 
become a fairly well established field now, the data stream problem poses a 
number of unique challenges which are not easily solved by traditional data 
mining methods. 

The topic of data streams is a very recent one. The first research papers on 
this topic appeared slightly under a decade ago, and since then this field has 
grown rapidly. There is a large volume of literature which has been published 
in this field over the past few years. The work is also of great interest to 
practitioners in the field who have to mine actionable insights with large volumes 
of continuously growing data. Because of the large volume of literature in the 
field, practitioners and researchers may often find it an arduous task of isolating 
the right literature for a given topic. In addition, from a practitioners point of 
view, the use of research literature is even more difficult, since much of the 
relevant material is buried in publications. While handling a real problem, it 
may often be difficult to know where to look in order to solve the problem. 

This book contains contributed chapters from a variety of well known re- 
searchers in the data mining field. While the chapters will be written by dif- 
ferent researchers, the topics and content will be organized in such a way so as 
to present the most important models, algorithms, and applications in the data 
mining field in a structured and concise way. In addition, the book is organized 
in order to make it more accessible to application driven practitioners. Given 
the lack of structurally organized information on the topic, the book will pro- 
vide insights which are not easily accessible otherwise. In addition, the book 
will be a great help to researchers and graduate students interested in the topic. 
The popularity and current nature of the topic of data streams is likely to make 
it an important source of information for researchers interested in the topic. 
The data mining community has grown rapidly over the past few years, and the 
topic of data streams is one of the most relevant and current areas of interest to 
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the community. This is because of the rapid advancement of the field of data 
streams in the past two to three years. While the data stream field clearly falls 
in the emerging category because of its recency, it is now beginning to reach a 
maturation and popularity point, where the development of an overview book 
on the topic becomes both possible and necessary. While this book attempts to 
provide an overview of the stream mining area, it also tries to discuss current 
topics of interest so as to be useful to students and researchers. It is hoped that 
this book will provide a reference to students, researchers and practitioners in 
both introducing the topic of data streams and understanding the practical and 
algorithmic aspects of the area. 



Chapter 1 

AN INTRODUCTION TO DATA STREAMS 

Cham C. Aggarwal 
IBM Z J Watson Research Center 
Hawthorne, NY 10532 

Abstract 
In recent years, advances in hardware technology have facilitated new ways of 

collecting data continuously. In many applications such as network monitoring, 
the volume of such data is so large that it may be impossible to store the data 
on disk. Furthermore, even when the data can be stored, the volume of the 
incoming data may be so large that it may be impossible to process any particular 
record more than once. Therefore, many data mining and database operations 
such as classification, clustering, frequent pattern mining and indexing become 
significantly more challenging in this context. 

In many cases, the data patterns may evolve continuously, as a result of which 
it is necessary to design the mining algorithms effectively in order to account for 
changes in underlying structure of the data stream. This makes the solutions of the 
underlying problems even more difficult from an algorithmic and computational 
point of view. This book contains anumber of chapters which are carefully chosen 
in order to discuss the broad research issues in data streams. The purpose of this 
chapter is to provide an overview of the organization of the stream processing 
and mining techniques which are covered in this book. 

1 Introduction 
In recent years, advances in hardware technology have facilitated the ability 

to collect data continuously. Simple transactions of everyday life such as using 
a credit card, a phone or browsing the web lead to automated data storage. 
Similarly, advances in information technology have lead to large flows of data 
across IP networks. In many cases, these large volumes of data can be mined for 
interesting and relevant information in a wide variety of applications. When the 
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volume of the underlying data is very large, it leads to a number of computational 
and mining challenges: 

With increasing volume of the data, it is no longer possible to process the 
data efficiently by using multiple passes. Rather, one can process a data 
item at most once. This leads to constraints on the implementation of the 
underlying algorithms. Therefore, stream mining algorithms typically 
need to be designed so that the algorithms work with one pass of the 
data. 

In most cases, there is an inherent temporal component to the stream 
mining process. This is because the data may evolve over time. This 
behavior of data streams is referred to as temporal locality. Therefore, 
a straightforward adaptation of one-pass mining algorithms may not be 
an effective solution to the task. Stream mining algorithms need to be 
carefully designed with a clear focus on the evolution of the underlying 
data. 

Another important characteristic of data streams is that they are often mined in 
a distributed fashion. Furthermore, the individual processors may have limited 
processing and memory. Examples of such cases include sensor networks, in 
which it may be desirable to perfom in-network processing of data stream with 
limited processing and memory [8, 191. This book will also contain a number 
of chapters devoted to these topics. 

This chapter will provide an overview of the different stream mining algo- 
rithms covered in this book. We will discuss the challenges associated with each 
kind of problem, and discuss an overview of the material in the corresponding 
chapter. 

2. Stream Mining Algorithms 
In this section, we will discuss the key stream mining problems and will 

discuss the challenges associated with each problem. We will also discuss an 
overview of the material covered in each chapter of this book. The broad topics 
covered in this book are as follows: 

Data Stream Clustering. Clustering is a widely studied problem in the 
data mining literature. However, it is more difficult to adapt arbitrary clus- 
tering algorithms to data streams because of one-pass constraints on the data 
set. An interesting adaptation of the k-means algorithm has been discussed 
in [14] which uses a partitioning based approach on the entire data set. This 
approach uses an adaptation of a k-means technique in order to create clusters 
over the entire data stream. In the context of data streams, it may be more 
desirable to determine clusters in specific user defined horizons rather than on 
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the entire data set. In chapter 2, we discuss the micro-clustering technique [3] 
which determines clusters over the entire data set. We also discuss a variety 
of applications of micro-clustering which can perform effective summarization 
based analysis of the data set. For example, micro-clustering can be extended 
to the problem of classification on data streams [5]. In many cases, it can also 
be used for arbitrary data mining applications such as privacy preserving data 
mining or query estimation. 

Data Stream Classification. The problem of classification is perhaps one 
of the most widely studied in the context of data stream mining. The problem 
of classification is made more difficult by the evolution of the underlying data 
stream. Therefore, effective algorithms need to be designed in order to take 
temporal locality into account. In chapter 3, we discuss a survey of classifica- 
tion algorithms for data streams. A wide variety of data stream classification 
algorithms are covered in this chapter. Some of these algorithms are designed to 
be purely one-pass adaptations of conventional classification algorithms [12], 
whereas others (such as the methods in [5, 161) are more effective in account- 
ing for the evolution of the underlying data stream. Chapter 3 discusses the 
different kinds of algorithms and the relative advantages of each. 

Frequent Pattern Mining. The problem of frequent pattern mining was 
first introduced in [6], and was extensively analyzed for the conventional case 
of disk resident data sets. In the case of data streams, one may wish to find the 
frequent itemsets either over a sliding window or the entire data stream [15,17]. 
In Chapter 4, we discuss an overview of the different frequent pattern mining 
algorithms, and also provide a detailed discussion of some interesting recent 
algorithms on the topic. 

Change Detection in Data Streams. As discussed earlier, the patterns 
in a data stream may evolve over time. In many cases, it is desirable to track 
and analyze the nature of these changes over time. In [I, 1 1, 181, a number of 
methods have been discussed for change detection of data streams. In addition, 
data stream evolution can also affect the behavior of the underlying data mining 
algorithms since the results can become stale over time. Therefore, in Chapter 
5, we have discussed the different methods for change detection data streams. 
We have also discussed the effect of evolution on data stream mining algorithms. 

Stream Cube Analysis of Multi-dimensional Streams. Much of stream 
data resides at a multi-dimensional space and at rather low level of abstraction, 
whereas most analysts are interested in relatively high-level dynamic changes in 
some combination of dimensions. To discover high-level dynamic and evolving 
characteristics, one may need to perform multi-level, multi-dimensional on-line 
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analytical processing (OLAP) of stream data. Such necessity calls for the inves- 
tigation of new architectures that may facilitate on-line analytical processing of 
multi-dimensional stream data [7, 101. 

In Chapter 6, an interesting stream-cube architecture that effectively per- 
forms on-line partial aggregation of multi-dimensional stream data, captures 
the essential dynamic and evolving characteristics of data streams, and facil- 
itates fast OLAP on stream data. Stream cube architecture facilitates online 
analytical processing of stream data. It also forms a preliminary structure for 
online stream mining. The impact of the design and implementation of stream 
cube in the context of stream mining is also discussed in the chapter. 

Loadshedding in Data Streams. Since data streams are generated by 
processes which are extraneous to the stream processing application, it is not 
possible to control the incoming stream rate. As a result, it is necessary for the 
system to have the ability to quickly adjust to varying incoming stream pro- 
cessing rates. Chapter 7 discusses one particular type of adaptivity: the ability 
to gracefully degrade performance via "load shedding" (dropping unprocessed 
tuples to reduce system load) when the demands placed on the system can- 
not be met in full given available resources. Focusing on aggregation queries, 
the chapter presents algorithms that determine at what points in a query plan 
should load shedding be performed and what amount of load should be shed at 
each point in order to minimize the degree of inaccuracy introduced into query 
answers. 

Sliding Window Computations in Data Streams. Many of the synopsis 
structures discussed use the entire data stream in order to construct the cor- 
responding synopsis structure. The sliding-window model of computation is 
motivated by the assumption that it is more important to use recent data in data 
stream computation [9]. Therefore, the processing and analysis is only done on 
a fixed history of the data stream. Chapter 8 formalizes this model of compu- 
tation and answers questions about how much space and computation time is 
required to solve certain problems under the sliding-window model. 

Synopsis Construction in Data Streams. The large volume of data streams 
poses unique space and time constraints on the computation process. Many 
query processing, database operations, and mining algorithms require efficient 
execution which can be difficult to achieve with a fast data stream. In many 
cases, it may be acceptable to generate approximate solutions for such prob- 
lems. In recent years a number of synopsis structures have been developed, 
which can be used in conjunction with a variety of mining and query process- 
ing techniques [13]. Some key synopsis methods include those of sampling, 
wavelets, sketches and histograms. In Chapter 9, a survey of the key synopsis 
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techniques is discussed, and the mining techniques supported by such methods. 
The chapter discusses the challenges and tradeoffs associated with using dif- 
ferent kinds of techniques, and the important research directions for synopsis 
construction. 

Join Processing in Data Streams. Stream join is a fundamental operation 
for relating information from different streams. This is especially useful in 
many applications such as sensor networks in which the streams arriving from 
different sources may need to be related with one another. In the stream setting, 
input tuples arrive continuously, and result tuples need to be produced continu- 
ously as well. We cannot assume that the input data is already stored or indexed, 
or that the input rate can be controlled by the query plan. Standard join algo- 
rithms that use blocking operations, e.g., sorting, no longer work. Conventional 
methods for cost estimation and query optimization are also inappropriate, be- 
cause they assume finite input. Moreover, the long-running nature of stream 
queries calls for more adaptive processing strategies that can react to changes 
and fluctuations in data and stream characteristics. The "stateful" nature of 
stream joins adds another dimension to the challenge. In general, in order to 
compute the complete result of a stream join, we need to retain all past arrivals 
as part of the processing state, because a new tuple may join with an arbitrarily 
old tuple arrived in the past. This problem is exacerbated by unbounded input 
streams, limited processing resources, and high performance requirements, as 
it is impossible in the long run to keep all past history in fast memory. Chap- 
ter 10 provides an overview of research problems, recent advances, and future 
research directions in stream join processing. 

Indexing Data Streams. The problem of indexing data streams attempts 
to create a an indexed representation, so that it is possible to efficiently answer 
different kinds of queries such as aggregation queries or trend based queries. 
This is especially important in the data stream case because of the huge vol- 
ume of the underlying data. Chapter 11 explores the problem of indexing and 
querying data streams. 

Dimensionality Reduction and Forecasting in Data Streams. Because 
of the inherent temporal nature of data streams, the problems of dimension- 
ality reduction and forecasting and particularly important. When there are a 
large number of simultaneous data stream, we can use the correlations between 
different data streams in order to make effective predictions [20, 211 on the 
future behavior of the data stream. In Chapter 12, an overview of dimensional- 
ity reduction and forecasting methods have been discussed for the problem of 
data streams. In particular, the well known MUSCLES method [21] has been 
discussed, and its application to data streams have been explored. In addition, 
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the chapter presents the SPIRIT algorithm, which explores the relationship be- 
tween dimensionality reduction and forecasting in data streams. In particular, 
the chapter explores the use of a compact number of hidden variables to com- 
prehensively describe the data stream. This compact representation can also be 
used for effective forecasting of the data streams. 

Distributed Mining of Data Streams. In many instances, streams are 
generated at multiple distributed computing nodes. Analyzing and monitoring 
data in such environments requires data mining technology that requires opti- 
mization of a variety of criteria such as communication costs across different 
nodes, as well as computational, memory or storage requirements at each node. 
A comprehensive survey of the adaptation of different conventional mining al- 
gorithms to the distributed case is provided in Chapter 13. In particular, the 
clustering, classification, outlier detection, frequent pattern mining, and surn- 
marization problems are discussed. In Chapter 14, some recent advances in 
stream mining algorithms are discussed. 

Stream Mining in Sensor Networks. With recent advances in hardware 
technology, it has become possible to track large amounts of data in a distributed 
fashion with the use of sensor technology. The large amounts of data collected 
by the sensor nodes makes the problem of monitoring a challenging one from 
many technological stand points. Sensor nodes have limited local storage, 
computational power, and battery life, as a result of which it is desirable to 
minimize the storage, processing and communication from these nodes. The 
problem is further magnified by the fact that a given network may have millions 
of sensor nodes and therefore it is very expensive to localize all the data at a given 
global node for analysis both from a storage and communication point of view. 
In Chapter 15, we discuss an overview of a number of stream mining issues 
in the context of sensor networks. This topic is closely related to distributed 
stream mining, and a number of concepts related to sensor mining have also 
been discussed in Chapters 13 and 14. 

3. Conclusions and Summary 
Data streams are a computational challenge to data mining problems because 

of the additional algorithmic constraints created by the large volume of data. In 
addition, the problem of temporal locality leads to a number of unique mining 
challenges in the data stream case. This chapter provides an overview to the 
different mining algorithms which are covered in this book. We discussed the 
different problems and the challenges which are associated with each problem. 
We also provided an overview of the material in each chapter of the book. 
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Abstract 
In recent years, data streams have become ubiquitous because of the large 

number of applications which generate huge volumes of data in an automated 
way. Many existing data mining methods cannot be applied directly on data 
streams because of the fact that the data needs to be mined in one pass. Fur- 
thermore, data streams show a considerable amount of temporal locality because 
of which a direct application of the existing methods may lead to misleading 
results. In this paper, we develop an efficient and effective approach for min- 
ing fast evolving data streams, which integrates the micro-clustering technique 
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with the high-level data mining process, and discovers data evolution regularities 
as well. Our analysis and experiments demonstrate two important data mining 
problems, namely stream clustering and stream classification, can be performed 
effectively using this approach, with high quality mining results. We discuss 
the use of micro-clustering as a general summarization technology to solve data 
mining problems on streams. Our discussion illustrates the importance of our 
approach for a variety of mining problems in the data stream domain. 

1. Introduction 
In recent years, advances in hardware technology have allowed us to auto- 

matically record transactions and other pieces of information of everyday life 
at a rapid rate. Such processes generate huge amounts of online data which 
grow at an unlimited rate. These kinds of online data are referred to as data 
streams. The issues on management and analysis of data streams have been 
researched extensively in recent years because of its emerging, imminent, and 
broad applications [l 1, 14, 17,231. 

Many important problems such as clustering and classification have been 
widely studied in the data mining community. However, a majority of such 
methods may not be working effectively on data streams. Data streams pose 
special challenges to a number of data mining algorithms, not only because 
of the huge volume of the online data streams, but also because of the fact 
that the data in the streams may show temporal correlations. Such temporal 
correlations may help disclose important data evolution characteristics, and they 
can also be used to develop efficient and effective mining algorithms. Moreover, 
data streams require online mining, in which we wish to mine the data in a 
continuous fashion. Furthermore, the system needs to have the capability to 
perform an ofline analysis as well based on the user interests. This is similar 
to an online analytical processing (OLAP) framework which uses the paradigm 
of pre-processing once, querying many times. 

Based on the above considerations, we propose a new stream mining frame- 
work, which adopts a tilted time window framework, takes micro-clustering 
as a preprocessing process, and integrates the preprocessing with the incre- 
mental, dynamic mining process. Micro-clustering preprocessing effectively 
compresses the data, preserves the general temporal locality of data, and facili- 
tates both online and offline analysis, as well as the analysis of current data and 
data evolution regularities. 

In this study, we primarily concentrate on the application of this technique 
to two problems: (1) stream clustering, and (2) stream classification. The heart 
of the approach is to use an online summarization approach which is efficient 
and also allows for effective processing of the data streams. We also discuss 
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Figure 2. I .  Micro-clustering Examples 

. time 
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Figure 2.2. Some Simple Time Windows 

a number of research directions, in which we show how the approach can be 
adapted to a variety of other problems. 

This paper is organized as follows. In the next section, we will present our 
micro-clustering based stream mining Eramework. In section 3, we discuss the 
stream clustering problem. The classification methods are developed in Section 
4. In section 5, we discuss a number of other problems which can be solved 
with the micro-clustering approach, and other possible research directions. In 
section 6, we will discuss some empirical results for the clustering and classi- 
fication problems. In Section 7 we discuss the issues related to our proposed 
stream mining methodology and compare it with other related work. Section 8 
concludes our study. 
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2. The Micro-clustering Based Stream Mining 
Framework 

In order to apply our technique to a variety of data mining algorithms, we 
utilize a micro-clustering based stream mining framework. This framework is 
designed by capturing summary information about the nature of the data stream. 
This summary information is defined by the following structures: 

Micro-clusters: We maintain statistical information about the data locality 
in terms of micro-clusters. These micro-clusters are defined as a temporal 
extension of the cluster feature vector [24]. The additivity property of the 
micro-clusters makes them a natural choice for the data stream problem. 

Pyramidal Time Frame: The micro-clusters are stored at snapshots in 
time which follow a pyramidal pattern. This pattern provides an effective trade- 
off between the storage requirements and the ability to recall summary statistics 
from different time horizons. 

The summary information in the micro-clusters is used by an offline com- 
ponent which is dependent upon a wide variety of user inputs such as the time 
horizon or the granularity of clustering. In order to define the micro-clusters, 
we will introduce a few concepts. It is assumed that the data stream consists - 
of a set of multi-dimensional records . . . Xk . . . arriving at time stamps 
TI . . . Tk . . .. Each is a multi-dimensional record containing d dimensions 
which are denoted by = (xi . . .x$. 

We will first begin by defining the concept of micro-clusters and pyramidal 
time frame more precisely. 

DEFINITION 2.1 A micro-cluster for a set of d-dimensionalpoints Xi, . . . Xi, -- 
with t imes tamps~,  . . . T,, is the (2-d+3) tuple (CF2", C F l X ,  CF2t, C F l t ,  n), 
wherein CF2" and C F l X  each correspond to a vector of d entries. The de$- 
nition of each of these entries is as follows: 

For each dimension, the sum of the squares of the data values is maintained 
in CF2". Thus, CF2" contains d values. The p-th entry of CF2" is equal to 
EY=l(< 12. 

For each dimension, the sum of the data values is maintained in C F l X .  
Thus, C F I X  contains d values. The p-th entry of C F I X  is equal to E7L=1 e;. 

The sum of the squares of the time stamps Ti, . . . Tin is maintained in 
CF2t. 

The sum of the time stamps Ti, . . . Tin is maintained in CFlt .  
The number of data points is maintained in n. 

We note that the above definition of micro-cluster maintains similar summary 
information as the cluster feature vector of [24], except for the additional in- 
formation about time stamps. We will refer to this temporal extension of the 
cluster feature vector for a set of points C by CFT(C). As in [24], this summary 
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information can be expressed in an additive way over the different data points. 
This makes it a natural choice for use in data stream algorithms. 

We note that the maintenance of a large number of micro-clusters is essential 
in the ability to maintain more detailed information about the micro-clustering 
process. For example, Figure 2.1 forms 3 clusters, which are denoted by a, b, c. 
At a later stage, evolution forms 3 different figures al ,  a2, bc, with a split into a1 
and a2, whereas b and c merged into bc. If we keep micro-clusters (each point 
represents a micro-cluster), such evolution can be easily captured. However, if 
we keep only 3 cluster centers a, by c, it is impossible to derive later a l ,  a2, bc 
clusters since the information of more detailed points are already lost. 

The data stream clustering algorithm discussed in this paper can generate 
approximate clusters in any user-specified length of history from the current 
instant. This is achieved by storing the micro-clusters at particular moments 
in the stream which are referred to as snapshots. At the same time, the current 
snapshot of micro-clusters is always maintained by the algorithm. The macro- 
clustering algorithm discussed at a later stage in this paper will use these h e r  
level micro-clusters in order to create higher level clusters which can be more 
easily understood by the user. Consider for example, the case when the current 
clock time is t, and the user wishes to find clusters in the stream based on 
a history of length h. Then, the macro-clustering algorithm discussed in this 
paper will use some of the additive properties of the micro-clusters stored at 
snapshots t ,  and (t, - h) in order to find the higher level clusters in a history 
or time horizon of length h. Of course, since it is not possible to store the 
snapshots at each and every moment in time, it is important to choose particular 
instants of time at which it is possible to store the state of the micro-clusters so 
that clusters in any user specified time horizon (t, - h, t,) can be approximated. 

We note that some examples of time frames used for the clustering process 
are the natural time frame (Figure 2.2(a) and (b)), and the logarithmic time 
frame (Figure 2.2(c)). In the natural time frame the snapshots are stored at 
regular intervals. We note that the scale of the natural time frame could be 
based on the application requirements. For example, we could choose days, 
months or years depending upon the level of granularity required in the analysis. 
A more flexible approach is to use the logarithmic time frame in which different 
variations of the time interval can be stored. As illustrated in Figure 2.2(c), we 
store snapshots at times of t ,  2 t, 4 t . . .. The danger of this is that we may 
jump too far between successive levels of granularity. We need an intermediate 
solution which provides a good balance between storage requirements and the 
level of approximation which a user specified horizon can be approximated. 

In order to achieve this, we will introduce the concept of a pyramidal time 
frame. In this technique, the snapshots are stored at differing levels of granular- 
ity depending upon the recency. Snapshots are classified into different orders 
which can vary from 1 to log(T), where T is the clock time elapsed since the 
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beginning of the stream. The order of a particular class of snapshots define 
the level of granularity in time at which the snapshots are maintained. The 
snapshots of different order are maintained as follows: 

0 Snapshots of the i-th order occur at time intervals of ai, where a is an 
integer and a 2 1. Specifically, each snapshot of the i-th order is taken at 
a moment in time when the clock value1 from the beginning of the stream is 
exactly divisible by a2. 

0 At any given moment in time, only the last a + 1 snapshots of order i are 
stored. 

We note that the above definition allows for considerable redundancy in 
storage of snapshots. For example, the clock time of 8 is divisible by 2', 2l, 
22, and 23 (where cr = 2). Therefore, the state of the micro-clusters at a clock 
time of 8 simultaneously corresponds to order 0, order 1, order 2 and order 
3 snapshots. From an implementation point of view, a snapshot needs to be 
maintained only once. We make the following observations: 

0 For a data stream, the maximum order of any snapshot stored at T time 
units since the beginning of the stream mining process is log, (T). 

For a data stream the maximum number of snapshots maintained at T time 
units since the beginning of the stream mining process is (a + 1) . log, (T). 

0 For any user specified time window of h, at least one stored snapshot can 
be found within 2 . h units of the current time. 

While the first two results are quite easy to see, the last one needs to be 
proven formally. 

LEMMA 2.2 Let h be a user-speciJied time window, t, be the current time, and 
t, be the time of the last stored snapshot of any orderjust before the time t, - h. 
Then t, - t, 5 2 . h. 

Proof: Let r be the smallest integer such that ar 2 h. Therefore, we know that 
ar-I < h. Since we know that there are a+ 1 snapshots of order (r - I), at least 
one snapshot of order r - 1 must always exist before t, - h. Lett, be the snapshot 
of order r - 1 which occurs just before t, - h. Then (t, - h) - t, 5 ar-l. 
Therefore, we have t, - t, 5 h + ar-l < 2 - h. 

Thus, in this case, it is possible to find a snapshot within a factor of 2 of 
any user-specified time window. Furthermore, the total number of snapshots 
which need to be maintained are relatively modest. For example, for a data 
stream running for 100 years with a clock time granularity of 1 second, the 
total number of snapshots which need to be maintained are given by (2 + 1) . 
log2(100 * 365 * 24 * 60 * 60) w 95. This is quite a modest requirement given 
the fact that a snapshot within a factor of 2 can always be found within any user 
specified time window. 

It is possible to improve the accuracy of time horizon approximation at a 
modest additional cost. In order to achieve this, we save the a1 + 1 snapshots 
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Table 2.1. An example of snapshots stored for a = 2 and 1 = 2 

Order of 
Snapshots 
0 
1 
2 
3 
4 
5 

of order r for 1 > 1. In this case, the storage requirement of the technique 
corresponds to (az + 1) log, (T) snapshots. On the other hand, the accuracy of 
time horizon approximation also increases substantially. In this case, any time 
horizon can be approximated to a factor of (1 + l/az-l). We summarize this 
result as follows: 

Clock Times (Last 5 Snapshots) 

5554535251 
5452504846 
5248444036 
48403224 16 

48 32 16 
32 

LEMMA 2.3 Let h be a user specijied time horizon, t, be the current time, and 
t, be the time of the last stored snapshot of any orderjust before the time t, - h. 
Then t, - t, < (1 + l /az-l)  - h. 

Proof: Similar to previous case. 
For larger values of I ,  the time horizon can be approximated as closely as 

desired. For example, by choosing 1 = 10, it is possible to approximate any 
time horizon within 0.2%, while a total of only (2'' + 1) log2(100 * 365 * 
24 * 60 * 60) = 32343 snapshots are required for 100 years. Since historical 
snapshots can be stored on disk and only the current snapshot needs to be 
maintained in main memory, this requirement is quite feasible from a practical 
point of view. It is also possible to specify the pyramidal time window in 
accordance with user preferences corresponding to particular moments in time 
such as beginning of calendar years, months, and days. While the storage 
requirements and horizon estimation possibilities of such a scheme are different, 
all the algorithmic descriptions of this paper are directly applicable. 

In order to clarify the way in which snapshots are stored, let us consider the 
case when the stream has been running starting at a clock-time of 1, and a use 
of a = 2 and 1 = 2. Therefore 22 + 1 = 5 snapshots of each order are stored. 
Then, at a clock time of 55, snapshots at the clock times illustrated in Table 2.1 
are stored. 

We note that a large number of snapshots are common among different orders. 
From an implementation point of view, the states of the micro-clusters at times 
of 16,24,32,36,40,44,46,48,50,51,52,53,54, and 55 are stored. It is easy 
to see that for more recent clock times, there is less distance between succes- 
sive snapshots (better granularity). We also note that the storage requirements 
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estimated in this section do not take this redundancy into account. Therefore, 
the requirements which have been presented so far are actually worst-case re- 
quirements. 

These redundancies can be eliminated by using a systematic rule described 
in [6], or by using a more sophisticated geometric time frame. In this technique, 
snapshots are classified into different frame numbers which can vary from 0 to a 
value no larger than log2 (T), where T is the maximum length of the stream. The 
frame number of a particular class of snapshots defines the level of granularity 
in time at which the snapshots are maintained. Specifically, snapshots of frame 
number i are stored at clock times which are divisible by 2i, but not by 2i+1. 
Therefore, snapshots of frame number 0 are stored only at odd clock times. It 
is assumed that for each frame number, at most max-capacity snapshots are 
stored. 

We note that for a data stream, the maximum frame number of any snapshot 
stored at T time units since the beginning of the stream mining process is 
log2(T). Since at most max-capacity snapshots of any order are stored, this 
also means that the maximum number of snapshots maintained at T time units 
since the beginning of the stream mining process is (max-capacity) . log2 (T). 
One interesting characteristic of the geometric time window is that for any user- 
specified time window of h, at least one stored snapshot can be found within 
a factor of 2 of the specified horizon. This ensures that sufficient granularity 
is available for analyzing the behavior of the data stream over different time 
horizons. We will formalize this result in the lemma below. 

LEMMA 2.4 Let h be a user-specijied time window, and t, be the current time. 
Let us also assume that max-capacity > 2. Then a snapshot exists at time t,, 
such that h/2 5 t, - t, I: 2 . h. 

Proof: Let r be the smallest integer such that h < 2T+1. Since r is the smallest 
such integer, it also means that h > 2'. This means that for any interval 
(t, - h, t,) of length h, at least one integer t' E (t, - h, t,) must exist which 
satisfies the property that t' mod 2'-l = 0 and t' mod 2r # 0. Let t' be the time 
stamp of the last (most current) such snapshot. This also means the following: 

Then, if max-capacity is at least 2, the second last snapshot of order ( r  - 1) 
is also stored and has a time-stamp value of t' - 2'. Let us pick the time 
t, = t' - 2'. By substituting the value oft,, we get: 

t, - t, = (t, - t' + 
Since (t, - t') L 0 and 2' > h/2, it easily follows from Equation 2.2 that 
tc - t, > h/2. 
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Table 2.2. A geometric time window 

- Frame no. 
0 
1 

Since t' is the position of the latest snapshot of frame (r - 1) occurring before 
the current time t,, it follows that (t, - t') < 2r. Subsituting this inequality in 
Equation 2.2, we get t, - t, < 2' + 2r < h + h = 2 . h. Thus, we have: 

Snapshots (by clock time) I 
69 67 65 
70 66 62 I 

The above result ensures that every possible horizon can be closely approx- 
imated within a modest level of accuracy. While the geometric time frame 
shares a number of conceptual similarities with the pyramidal time frame [6], 
it is actually quite different and also much more efficient. This is because it 
eliminates the double counting of the snapshots over different frame numbers, 
as is the case with the pyramidal time frame [6]. In Table 2.2, we present 
an example of a frame table illustrating snapshots of different frame numbers. 
The rules for insertion of a snapshot t (at time t) into the snapshot frame table 
are defined as follows: (1) if (t mod 2i) = 0 but (t mod 2'+') # 0, t is in- 
serted into f rame-number i (2) each slot has a max-capacity (which is 3 in 
our example). At the insertion o f t  into f rame-number i, if the slot already 
reaches its max-capacity, the oldest snapshot in this frame is removed and 
the new snapshot inserted. For example, at time 70, since (70 mod 2') = 0 
but (70 mod 22) # 0, 70 is inserted into framenumber 1 which knocks out 
the oldest snapshot 58 if the slot capacity is 3. Following this rule, when slot 
capacity is 3, the following snapshots are stored in the geometric time window 
table: 16,24,32,40,48,52,56,60,62,64,65,66,67,68,69,70, as shown in 
Table 2.2. From the table, one can see that the closer to the current time, the 
denser are the snapshots stored. 

3. Clustering Evolving Data Streams: A Micro-clustering 
Approach 

The clustering problem is defined as follows: for a given set of data points, 
we wish to partition them into one or more groups of similar objects. The 
similarity of the objects with one another is typically defined with the use of 
some distance measure or objective function. The clustering problem has been 
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widely researched in the database, data mining and statistics communities [I 2, 
18,22,20,21,24] because of its use in a wide range of applications. Recently, 
the clustering problem has also been studied in the context of the data stream 
environment [17,23]. 

A previous algorithm called STREAM [23] assumes that the clusters are to be 
computed over the entire data stream. While such a task may be useful in many 
applications, a clustering problem may often be defined only over a portion of 
a data stream. This is because a data stream should be viewed as an infinite 
process consisting of data which continuously evolves with time. As a result, 
the underlying clusters may also change considerably with time. The nature of 
the clusters may vary with both the moment at which they are computed as well 
as the time horizon over which they are measured. For example, a data analyst 
may wish to examine clusters occurring in the last month, last year, or last 
decade. Such clusters may be considerably different. Therefore, we assume 
that one of the inputs to the clustering algorithm is a time horizon over which 
the clusters are found. Next, we will discuss CluStream, the online algorithm 
used for clustering data streams. 

3.1 Micro-clustering Challenges 
We note that since stream data naturally imposes a one-pass constraint on the 

design of the algorithms, it becomes more difficult to provide such a flexibility 
in computing clusters over different kinds of time horizons using conventional 
algorithms. For example, a direct extension of the stream based Ic-means algo- 
rithm in [23] to such a case would require a simultaneous maintenance of the 
intermediate results of clustering algorithms over all possible time horizons. 
Such a computational burden increases with progression of the data stream and 
can rapidly become a bottleneck for online implementation. Furthermore, in 
many cases, an analyst may wish to determine the clusters at a previous moment 
in time, and compare them to the current clusters. This requires even greater 
book-keeping and can rapidly become unwieldy for fast data streams. 

Since a data stream cannot be revisited over the course of the computation, 
the clustering algorithm needs to maintain a substantial amount of information 
so that important details are not lost. For example, the algorithm in [23] is 
implemented as a continuous version of k-means algorithm which continues 
to maintain a number of cluster centers which change or merge as necessary 
throughout the execution of the algorithm. Such an approach is especially risky 
when the characteristics of the stream change over time. This is because the 
amount of information maintained by a k-means type approach is too approxi- 
mate in granularity, and once two cluster centers are joined, there is no way to 
informatively split the clusters when required by the changes in the stream at a 
later stage. 
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Therefore a natural design to stream clustering would be separate out the pro- 
cess into an online micro-clustering component and an offline macro-clustering 
component. The online micro-clustering component requires a very efficient 
process for storage of appropriate summary statistics in a fast data stream. The 
offline component uses these summary statistics in conjunction with other user 
input in order to provide the user with a quick understanding of the clusters 
whenever required. Since the offline component requires only the summary 
statistics as input, it turns out to be very efficient in practice. This leads to 
several challenges: 

0 What is the nature of the summary information which can be stored ef- 
ficiently in a continuous data stream? The summary statistics should provide 
sufficient temporal and spatial information for a horizon specific offline clus- 
tering process, while being prone to an efficient (online) update process. 

At what moments in time should the summary information be stored away 
on disk? How can an effective trade-off be achieved between the storage re- 
quirements of such a periodic process and the ability to cluster for a specific 
time horizon to within a desired level of approximation? 

How can the periodic summary statistics be used to provide clustering and 
evolution insights over user-specified time horizons? 

3.2 Online Micro-cluster Maintenance: The CluStream 
Algorithm 

The micro-clustering phase is the online statistical data collection portion 
of the algorithm. This process is not dependent on any user input such as the 
time horizon or the required granularity of the clustering process. The aim 
is to maintain statistics at a sufficiently high level of (temporal and spatial) 
granularity so that it can be effectively used by the offline components such 
as horizon-specific macro-clustering as well as evolution analysis. The basic 
concept of the micro-cluster maintenance algorithm derives ideas from the k- 
means and nearest neighbor algorithms. The algorithm works in an iterative 
fashion, by always maintaining a current set of micro-clusters. It is assumed that 
a total of q micro-clusters are stored at any moment by the algorithm. We will 
denote these micro-clusters by M 1 . . . Mq.  Associated with each micro-cluster 
i, we create a unique id whenever it is first created. If two micro-clusters are 
merged (as will become evident from the details of our maintenance algorithm), 
a list of ids is created in order to identify the constituent micro-clusters. The 
value of q is determined by the amount of main memory available in order to 
store the micro-clusters. Therefore, typical values of q are significantly larger 
than the natural number of clusters in the data but are also significantly smaller 
than the number of data points arriving in a long period of time for a massive 
data stream. These micro-clusters represent the current snapshot of clusters 
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which change over the course of the stream as new points arrive. Their status is 
stored away on disk whenever the clock time is divisible by ai for any integer 
i. At the same time any micro-clusters of order r which were stored at a time 
in the past more remote than aZ+" units are deleted by the algorithm. 

We first need to create the initial q micro-clusters. This is done using an 
offline process at the very beginning of the data stream computation process. 
At the very beginning of the data stream, we store the first InitNumber points 
on disk and use a standard k-means clustering algorithm in order to create the 
q initial micro-clusters. The value of InitNumber is chosen to be as large as 
permitted by the computational complexity of a k-means algorithm creating q 
clusters. 

Once these initial micro-clusters have been established, the online process of 
updating the micro-clusters is initiated. Whenever a new data point arrives, 
the micro-clusters are updated in order to reflect the changes. Each data point 
either needs to be absorbed by a micro-cluster, or it needs to be put in a cluster of 
its own. The first preference is to absorb the data point into a currently existing 
micro-cluster. We first find the distance of each data point to the micro-cluster 
centroids M I  . . . M4. Let us denote this distance value of the data point Xi, 
to the centroid of the micro-cluster M by dist(M j, Xi,). Since the centroid 
of the micro-cluster is available in the cluster feature vector, this value can be 
computed relatively easily. 

We find the closest cluster M, to the data point z. We note that in many 
cases, the point Xi, does not naturally belong to the cluster Mp. These cases 
are as follows: 

0 The data point Xi, corresponds to an outlier. 
0 The data point Xi, corresponds to the beginning of a new cluster because 

of evolution of the data stream. 
While the two cases above cannot be distinguished until more data points 

arrive, the data point needs to be assigned a (new) micro-cluster of its own 
with a unique id. How do we decide whether a completely new cluster should 
be created? In order to make this decision, we use the cluster feature vector 
of M p  to decide if this data point falls within the maximum boundary of the 
micro-cluster M p .  If SO, then the data point Xi, is added to the micro-cluster 
M p  using the CF additivity property. The maximum boundary of the micro- 
cluster M p  is defined as a factor o f t  of the RMS deviation of the data points 
in M p  from the centroid. We define this as the maximal bounda ry factor. We 
note that the RMS deviation can only be defined for a cluster with more than 
1 point. For a cluster with only 1 previous point, the maximum boundary is 
defined in a heuristic way. Specifically, we choose it to be r times that of the 
next closest cluster. 

If the data point does not lie within the maximum boundary of the nearest 
micro-cluster, then a new micro-cluster must be created containing the data 
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point Xi,. This newly created micro-cluster is assigned a new id which can 
identify it uniquely at any future stage of the data steam process. However, 
in order to create this new micro-cluster, the number of other clusters must 
be reduced by one in order to create memory space. This can be achieved by 
either deleting an old cluster orjoining two of the old clusters. Our maintenance 
algorithm first determines if it is safe to delete any of the current micro-clusters 
as outliers. If not, then a merge of two micro-clusters is initiated. 

The first step is to identify if any of the old micro-clusters are possibly out- 
liers which can be safely deleted by the algorithm. While it might be tempting 
to simply pick the micro-cluster with the fewest number of points as the micro- 
cluster to be deleted, this may often lead to misleading results. In many cases, 
a given micro-cluster might correspond to a point of considerable cluster pres- 
ence in the past history of the stream, but may no longer be an active cluster 
in the recent stream activity. Such a micro-cluster can be considered an out- 
lier from the current point of view. An ideal goal would be to estimate the 
average timestamp of the last m arrivals in each micro-cluster 2, and delete 
the micro-cluster with the least recent timestamp. While the above estimation 
can be achieved by simply storing the last m points in each micro-cluster, this 
increases the memory requirements of a micro-cluster by a factor of m. Such 
a requirement reduces the number of micro-clusters that can be stored by the 
available memory and therefore reduces the effectiveness of the algorithm. 

We will find a way to approximate the average timestamp of the last m data 
points of the cluster M. This will be achieved by using the data about the 
timestamps stored in the micro-cluster M. We note that the timestamp data 
allows uito calculate the mean and standard deviation3 of the arrival times of 
points in a given micro-cluster M. Let these values be denoted by pM and 
OM respectively. Then, we find the time of arrival of the m/ (2 n)-th percentile 
of the points in M assuming that the timestamps are normally distributed. This 
timestamp is used as the approximate value of the recency. We shall call this 
value as the relevance stamp of cluster M. When the least relevance stamp of 
any micro-cluster is below a user-defined threshold 6, it can be eliminated and 
a new micro-cluster can be created with a unique id corresponding to the newly 
arrived data point Xi,. 

In some cases, none of the micro-clusters can be readily eliminated. This 
happens when all relevance stamps are sufficiently recent and lie above the 
user-defined threshold 6. In such a case, two of the micro-clusters need to be 
merged. We merge the two micro-clusters which are closest to one another. 
The new micro-cluster no longer corresponds to one id. Instead, an idlist is 
created which is a union of the the ids in the individual micro-clusters. Thus, 
any micro-cluster which is result of one or more merging operations can be 
identified in terms of the individual micro-clusters merged into it. 
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While the above process of updating is executed at the arrival of each data 
point, an additional process is executed at each clock time which is divisible 
by ai for any integer i. At each such time, we store away the current set of 
micro-clusters (possibly on disk) together with their id list, and indexed by their 
time of storage. We also delete the least recent snapshot of order i, if a' + 1 
snapshots of such order had already been stored on disk, and if the clock time for 
this snapshot is not divisible by ai+l. (In the latter case, the snapshot continues 
to be a viable snapshot of order (i  + I).) These micro-clusters can then be used 
to form higher level clusters or an evolution analysis of the data stream. 

3.3 High Dimensional Projected Stream Clustering 
The method can also be extended to the case of high dimensional projected 

stream clustering . The algorithms is referred to as HPSTREAM. The high- 
dimensional case presents a special challenge to clustering algorithms even in 
the traditional domain of static data sets. This is because of the sparsity of 
the data in the high-dimensional case. In high-dimensional space, all pairs 
of points tend to be almost equidistant from one another. As a result, it is 
often unrealistic to define distance-based clusters in a meaningful way. Some 
recent work on high-dimensional data uses techniques for projected clustering 
which can determine clusters for a specific subset of dimensions [I, 41. In these 
methods, the definitions of the clusters are such that each cluster is specific 
to a particular group of dimensions. This alleviates the sparsity problem in 
high-dimensional space to some extent. Even though a cluster may not be 
meaningfully defined on all the dimensions because of the sparsity of the data, 
some subset of the dimensions can always be found on which particular subsets 
of points form high quality and meaningful clusters. Of course, these subsets 
of dimensions may vary over the different clusters. Such clusters are referred 
to as projected clusters [I]. 

In [8], we have discussed methods for high dimensional projected clustering 
of data streams. The basic idea is to use an (incremental) algorithm in which 
we associate a set of dimensions with each cluster. The set of dimensions is 
represented as a d-dimensional bit vector B(Ci) for each cluster structure in 
FCS. This bit vector contains a 1 bit for each dimension which is included 
in cluster Ci. In addition, the maximum number of clusters k and the average 
cluster dimensionality 1 is used as an input parameter. The average cluster 
dimensionality 1 represents the average number of dimensions used in the cluster 
projection. An iterative approach is used in which the dimensions are used to 
update the clusters and vice-versa. The structure in FCS  uses a decay-based 
mechanism in order to adjust for evolution in the underlying data stream. Details 
are discussed in [8]. 
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Figure 2.3. Varying Horizons for the classification process 

Classification of Data Streams: A Micro-clustering 
Approach 

One important data mining problem which has been studied in the context of 
data streams is that of stream classification [15]. The main thrust on data stream 
mining in the context of classification has been that of one-pass mining [14,19]. 
In general, the use of one-pass mining does not recognize the changes which 
have occurred in the model since the beginning of the stream construction 
process [5]. While the work in [19] works on time changing data streams, 
the focus is on providing effective methods for incremental updating of the 
classification model. We note that the accuracy of such a model cannot be 
greater than the best sliding window model on a data stream. For example, in 
the case illustrated in Figure 2.3, we have illustrated two classes (labeled by 
'x' and '-') whose distribution changes over time. Correspondingly, the best 
horizon at times tl and t 2  will also be different. As our empirical results will 
show, the true behavior of the data stream is captured in a temporal model which 
is sensitive to the level of evolution of the data stream. 

The classification process may require simultaneous model construction and 
testing in an environment which constantly evolves over time. We assume that 
the testing process is performed concurrently with the training process. This 
is often the case in many practical applications, in which only a portion of 
the data is labeled, whereas the remaining is not. Therefore, such data can 
be separated out into the (labeled) training stream, and the (unlabeled) testing 
stream. The main difference in the construction of the micro-clusters is that 
the micro-clusters are associated with a class label; therefore an incoming data 
point in the training stream can only be added to a micro-cluster belonging to 
the same class. Therefore, we construct micro-clusters in almost the same way 
as the unsupervised algorithm, with an additional class-label restriction. 

From the testing perspective, the important point to be noted is that the most 
effective classification model does not stay constant over time, but varies with 
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progression of the data stream. If a static classification model were used for 
an evolving test stream, the accuracy of the underlying classification process 
is likely to drop suddenly when there is a sudden burst of records belonging to 
a particular class. In such a case, a classification model which is constructed 
using a smaller history of data is likely to provide better accuracy. In other 
cases, a longer history of training provides greater robustness. 

In the classification process of an evolving data stream, either the short 
term or long term behavior of the stream may be more important, and it often 
cannot be known a-priori as to which one is more important. How do we 
decide the window or horizon of the training data to use so as to obtain the best 
classification accuracy? While techniques such as decision trees are useful for 
one-pass mining of data streams [14, 191, these cannot be easily used in the 
context of an on-demand classijier in an evolving environment. This is because 
such a classifier requires rapid variation in the horizon selection process due 
to data stream evolution. Furthermore, it is too expensive to keep track of 
the entire history of the data in its original fine granularity. Therefore, the 
on-demand classification process still requires the appropriate machinery for 
efficient statistical data collection in order to perform the classification process. 

4.1 On-Demand Stream Classification 
We use the micro-clusters to perform an On Demand Stream Classijication 

Process. In order to perform effective classification of the stream, it is important 
to find the correct time-horizon which should be used for classification. How 
do we find the most effective horizon for classification at a given moment in 
time? In order to do so, a small portion of the training stream is not used 
for the creation of the micro-clusters. This portion of the training stream is 
referred to as the horizon fitting stream segment. The number of points in the 
stream used for horizon fitting is denoted by kf it. The remaining portion of the 
training stream is used for the creation and maintenance of the class-specific 
micro-clusters as discussed in the previous section. 

Since the micro-clusters are based on the entire history of the stream, they 
cannot directly be used to test the effectiveness of the classification process over 
different time horizons. This is essential, since we would like to find the time 
horizon which provides the greatest accuracy during the classification process. 
We will denote the set of micro-clusters at time t, and horizon h by N(t,, h). 
This set of micro-clusters is determined by subtracting out the micro-clusters 
at time t, - h from the micro-clusters at time t,. The subtraction operation 
is naturally defined for the micro-clustering approach. The essential idea is 
to match the micro-clusters at time t, to the micro-clusters at time t, - h, 
and subtract out the corresponding statistics. The additive property of micro- 
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clusters ensures that the resulting clusters correspond to the horizon (t, - h, t,). 
More details can be found in [6]. 

Once the micro-clusters for a particular time horizon have been determined, 
they are utilized to determine the classification accuracy of that particular hori- 
zon. This process is executed periodically in order to adjust for the changes 
which have occurred in the stream in recent time periods. For this purpose, 
we use the horizon fitting stream segment. The last kfi t  points which have 
arrived in the horizon fitting stream segment are utilized in order to test the 
classification accuracy of that particular horizon. The value of kfi t  is chosen 
while taking into consideration the computational complexity of the horizon 
accuracy estimation. In addition, the value of kfi t  should be small enough so 
that the points in it reflect the immediate locality oft,. Typically, the value of 
kf i t  should be chosen in such a way that the least recent point should be no 
larger than a pre-specified number of time units from the current time t,. Let us 
denote this set of points by Q it.  Note that since &fit is a part of the training 
stream, the class labels are known a-priori. 

In order to test the classification accuracy of the process, each point ;if E &fit  

is used in the following nearest neighbor classification procedure: 

0 We find the closest micro-cluster in N(tc, h) to x. 
We determine the class label of this micro-cluster and compare it to the true 

class label of X. The accuracy over all the points in Qfi t  is then determined. 
This provides the accuracy over that particular time horizon. 

The accuracy of all the time horizons which are tracked by the geometric 
time frame are determined. The p time horizons which provide the greatest 
dynamic classification accuracy (using the last kfi t  points) are selected for the 
classification of the stream. Let us denote the corresponding horizon values 
by 3-1 = {hl . . . h,). We note that since kf i t  represents only a small locality 
of the points within the current time period t,, it would seem at first sight 
that the system would always pick the smallest possible horizons in order to 
maximize the accuracy of classification. However, this is often not the case 
for evolving data streams. Consider for example, a data stream in which the 
records for a given class arrive for a period, and then subsequently start arriving 
again after a time interval in which the records for another class have arrived. 
In such a case, the horizon which includes previous occurrences of the same 
class is likely to provide higher accuracy than shorter horizons. Thus, such a 
system dynamically adapts to the most effective horizon for classification of 
data streams. In addition, for a stable stream the system is also likely to pick 
larger horizons because of the greater accuracy resulting from use of larger data 
sizes. 
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The classification of the test stream is a separate process which is executed 
continuously throughout the algorithm. For each given test instance x, the 
above described nearest neighbor classification process is applied using each 
hi E 'Ti. It is often possible that in the case of a rapidly evolving data stream, 
different horizons may report result in the determination of different class labels. 
The majority class among these p class labels is reported as the relevant class. 
More details on the technique may be found in [7]. 

5. Other Applications of Micro-clustering and Research 
Directions 

While this paper discusses two applications of micro-clustering, we note that 
a number of other problems can be handled with the micro-clustering approach. 
This is because the process of micro-clustering creates a summary of the data 
which can be leveraged in a variety of ways for other problems in data mining. 
Some examples of such problems are as follows: 

Privacy Preserving Data Mining: In the problem of privacy preserving 
data mining, we create condensed representations [3] of the data which 
show k-anonymity. These condensed representations are like micro- 
clusters, except that each cluster has a minimum cardinality threshold 
on the number of data points in it. Thus, each cluster contains at least 
k data-points, and we ensure that the each record in the data cannot be 
distinguished from at least k other records. For this purpose, we only 
maintain the summary statistics for the data points in the clusters as 
opposed to the individual data points themselves. In addition to the first 
and second order moments we also maintain the covariance matrix for 
the data in each cluster. We note that the covariance matrix provides 
a complete overview of the distribution of in the data. This covariance 
matrix can be used in order to generate the pseudo-points which match 
the distribution behavior of the data in each micro-cluster. For relatively 
small micro-clusters, it is possible to match the probabilistic distribution 
in the data fairly closely. The pseudo-points can be used as a surrogate for 
the actual data points in the clusters in order to generate the relevant data 
mining results. Since the pseudo-points match the original distribution 
quite closely, they can be used for the purpose of a variety of data mining 
algorithms. In [3], we have illustrated the use of the privacy-preserving 
technique in the context of the classification problem. Our results show 
that the classification accuracy is not significantly reduced because of the 
use of pseudo-points instead of the individual data points. 

Query Estimation: Since micro-clusters encode summary information 
about the data, they can also be used for query estimation . A typical 
example of such a technique is that of estimating the selectivity of queries. 
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In such cases, the summary statistics of micro-clusters can be used in 
order to estimate the number of data points which lie within a certain 
interval such as a range query. Such an approach can be very efficient 
in a variety of applications since voluminous data streams are difficult to 
use if they need to be utilized for query estimation. However, the micro- 
clustering approach can condense the data into summary statistics, so that 
it is possible to efficiently use it for various kinds of queries. We note 
that the technique is quite flexible as long as it can be used for different 
kinds of queries. An example of such a technique is illustrated in [9], in 
which we use the micro-clustering technique (with some modifications 
on the tracked statistics) for futuristic query processing in data streams. 

Statistical Forecasting: Since micro-clusters contain temporal and con- 
densed information, they can be used for methods such as statistical 
forecasting of streams . While it can be computationally intensive to 
use standard forecasting methods with large volumes of data points, the 
micro-clustering approach provides a methodology in which the con- 
densed data can be used as a surrogate for the original data points. For 
example, for a standard regression problem, it is possible to use the cen- 
troids of different micro-clusters over the various temporal time frames in 
order to estimate the values of the data points. These values can then be 
used for making aggregate statistical observations about the future. We 
note that this is a useful approach in many applications since it is often 
not possible to effectively make forecasts about the future using the large 
volume of the data in the stream. In [9], it has been shown how to use the 
technique for querying and analysis of future behavior of data streams. 

In addition, we believe that the micro-clustering approach is powefil enough 
to accomodate a wide variety of problems which require information about the 
summary distribution of the data. In general, since many new data mining 
problems require summary information about the data, it is conceivable that the 
micro-clustering approach can be used as a methodology to store condensed 
statistics for general data mining and exploration applications. 

6. Performance Study and Experimental Results 
All of our experiments are conducted on a PC with Intel Pentium I11 processor 

and 5 12 MB memory, which runs Windows XP professional operating system. 
For testing the accuracy and efficiency of the CluStream algorithm, we compare 
CluStream with the STREAM algorithm [17,23], the best algorithm reported 
so far for clustering data streams. CluStream is implemented according to the 
description in this paper, and the STREAM K-means is done strictly according 
to [23], which shows better accuracy than BIRCH [24]. To make the comparison 
fair, both CluStream and STREAM K-means use the same amount of memory. 
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Specifically, they use the same stream incoming speed, the same amount of 
memory to store intermediate clusters (called Micro-clusters in CluStream), and 
the same amount of memory to store the final clusters (called Macro-clusters 
in CluStream). 

Because the synthetic datasets can be generated by controlling the number 
of data points, the dimensionality, and the number of clusters, with different 
distribution or evolution characteristics, they are used to evaluate the scalability 
in our experiments. However, since synthetic datasets are usually rather dif- 
ferent from real ones, we will mainly use real datasets to test accuracy, cluster 
evolution, and outlier detection. 
Real datasets. First, we need to find some real datasets that evolve significantly 
over time in order to test the effectiveness of CluStream. A good candidate for 
such testing is the KDD-CUP'99 Network Intrusion Detection stream data set 
which has been used earlier [23] to evaluate STREAM accuracy with respect 
to BIRCH. This data set corresponds to the important problem of automatic 
and real-time detection of cyber attacks. This is also a challenging problem 
for dynamic stream clustering in its own right. The offline clustering algo- 
rithms cannot detect such intrusions in real time. Even the recently proposed 
stream clustering algorithms such as BIRCH and STREAM cannot be very ef- 
fective because the clusters reported by these algorithms are all generated from 
the entire history of data stream, whereas the current cases may have evolved 
significantly. 

The Network Intrusion Detection dataset consists of a series of TCP con- 
nection records from two weeks of LAN network traffic managed by MIT 
Lincoln Labs. Each n record can either correspond to a normal connection, or 
an intrusion or attack. The attacks fall into four main categories: DOS (i.e., 
denial-of-service), R2L (i.e., unauthorized access from a remote machine), U2R 
(i.e., unauthorized access to local superuser privileges), and PROBING (i.e., 
surveillance and other probing). As a result, the data contains a total of five 
clusters including the class for "normal connections". The attack-types are 
further classified into one of 24 types, such as buffer-overflow, guess-passwd, 
neptune, portsweep, rootkit, smurf, warezclient, spy, and so on. It is evident 
that each specific attack type can be treated as a sub-cluster. Most of the con- 
nections in this dataset are normal, but occasionally there could be a burst of 
attacks at certain times. Also, each connection record in this dataset contains 
42 attributes, such as duration of the connection, the number of data bytes trans- 
mitted from source to destination (and vice versa), percentile of connections 
that have "SYN" errors, the number of "root" accesses, etc. As in 1231, all 34 
continuous attributes will be used for clustering and one outlier point has been 
removed. 

Second, besides testing on the rapidly evolving network intrusion data stream, 
we also test our method over relatively stable streams. Since previously re- 
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ported stream clustering algorithms work on the entire history of stream data, 
we believe that they should perform effectively for some data sets with stable 
distribution over time. An example of such a data set is the KDD-CUP'98 
Charitable Donation data set. We will show that even for such datasets, the 
CluStream can consistently beat the STREAM algorithm. 

The KDD-CUP'98 Charitable Donation data set has also been used in eval- 
uating several one-scan clustering algorithms, such as [16]. This data set con- 
tains 95412 records of information about people who have made charitable 
donations in response to direct mailing requests, and clustering can be used to 
group donors showing similar donation behavior. As in [16], we will only use 
56 fields which can be extracted from the total 481 fields of each record. This 
data set is converted into a data stream by taking the data input order as the 
order of streaming and assuming that they flow-in with a uniform speed. 
Synthetic datasets. To test the scalability of CluStream, we generate some 
synthetic datasets by varying base size from 1 OOK to 1 OOOK points, the number 
of clusters from 4 to 64, and the dimensionality in the range of 10 to 100. 
Because we know the true cluster distribution a priori, we can compare the 
clusters found with the true clusters. The data points of each synthetic dataset 
will follow a series of Gaussian distributions, and to reflect the evolution of the 
stream data over time, we change the mean and variance of the current Gaussian 
distribution every 10K points in the synthetic data generation. 

The quality of clustering on the real data sets was measured using the sum 
of square distance (SSQ), defined as follows. Assume that there are a total of 
N points in the past horizon at current time Tc. For each point pi, we find the 
centroid Cpi of its closest macro-cluster, and compute d(pi, Cpi), the distance 
between pi and C,,. Then the SSQ at time Tc with horizon H (denoted as 
SSQ(Tc7 H)) is equal to the sum of d2(pi, Cpi) for all the N points within the 
previous horizon H. Unless otherwise mentioned, the algorithm parameters 
were set at a = 2,1 = 10, InitNumber = 2000, and t = 2. 

We compare the clustering quality of CluStream with that of STREAM for 
different horizons at different times using the Network Intrusion dataset and the 
Charitable donation data set. The results are illustrated in Figures 2.4 and 2.5. 
We run each algorithm 5 times and compute their average SSQs. The results 
show that CluStream is almost always better than STREAM. All experiments 
for these datasets have shown that CluStream has substantially higher quality 
than STREAM. However the Network Intrusion data set showed significantly 
better results than the charitable donation data set because of the fact the network 
intrusion data set was a highly evolving data set. For such cases, the evolution 
sensitive CluStream algorithm was much more effective than the STREAM 
algorithm. 

We also tested the accuracy of the On-Demand Stream ClassiJier. The first 
test was performed on the Network Intrusion Data Set. The first experiment 
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Figure 2.4. Quality comparison (Network Intrusion dataset, horizon=256, stream-speed=200) 
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Figure 2.5. Quality comparison (Charitable Donation dataset, horizon=4, streamspeed=200) 
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Figure 2.6. Accuracy comparison (Network Intrusion dataset, 
buffer-size=1600, kfit=80, init_number=400) 
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Figure 2.7. Distribution of the (smallest) best horizon (Network Intrusion dataset, Time 
units=2500, buffer-size=1600, kf $t=80, init-number=400) 
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Figure 2.8. Accuracy comparison (Synthetic dataset B300kC5D20, 
buffer_size=500, kfit=25, init-number=400) 
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Figure 2.9. Distribution of the (smallest) best horizon (Synthetic dataset B300kCSD20, Time 
units=2000, buffersize=500, lcfit=25, init-number400) 

was conducted with a stream speed at 80 connections per time unit (i.e., there 
are 40 training stream points and 40 test stream points per time unit). We 
set the buffersize at 1600 points, which means upon receiving 1600 points 
(including both training and test stream points) we'll use a small set of the 
training data points (In this case kfi t  =80) to choose the best horizon. We 
compared the accuracy of the On-Demand-Stream classifier with two simple 
one-pass stream classifiers over the entire data stream and the selected sliding 
window (i.e., sliding window H = 8). Figure 2.6 shows the accuracy comparison 
among the three algorithms. We can see the On-Demand-Stream classifier 
consistently beats the two simple one-pass classifiers. For example, at time unit 
2000, the On-Demand-Stream classijier's accuracy is about 4% higher than the 
classifier with fixed sliding window, and is about 2% higher than the classifier 
with the entire dataset. Because the class distribution of this dataset evolves 
significantly over time, either the entire dataset or a fixed sliding window may 
not always capture the underlying stream evolution nature. As a result, they 
always have a worse accuracy than the On-Demand-Stream classifier which 
always dynamically chooses the best horizon for classifying. 

Figure 2.7 shows the distribution of the best horizons (They are the smallest 
ones if there exist several best horizons at the same time). Although about 78.4% 
of the (smallest) best horizons have a value 114, there do exist about 21.6% best 
horizons ranging from 112 to 32 (e.g., about 6.4% of the best horizons have a 
value 32). This also illustrates that there is no fixed sliding window that can 
achieve the best accuracy and the reason why the On-Demand-Stream classifier 
can outperform the simple one-pass classifiers over either the entire dataset or 
a fixed sliding window. 

We have also generated one synthetic dataset B300kC5D20 to test the clas- 
sification accuracy of these algorithms. This dataset contains 5 class labels and 
300K data points with 20 dimensions. We first set the stream speed at 100 points 
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Figure 2.10. Stream Proc. Rate (Charit. Donation data, streamspeed=2000) 
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Figure 2.11. Stream Proc. Rate (Ntwk. Intrusion data, stream_speed=2000) 

per time unit. Figure 2.8 shows the accuracy comparison among the three al- 
gortihms: The On-Demand-Stream classijier always has much better accuracy 
than the other two classifiers. Figure 2.9 shows the distribution of the (small- 
est) best horizons which can explain very well why the On-Demand-Stream 
classiJier has better accuracy. 

We also tested the efficiency of the micro-cluster maintenance algorithm 
with respect to STREAM on the real data sets. We note that this maintenance 
process needs to be performed both for the clustering and classificiation algo- 
rithms with minor differences. Therefore, we present the results for the case 
of clustering. By setting the number of micro-clusters to 10 times the number 
of natural clusters, Figures 2.10 and 2.1 1 show the stream processing rate (i.e., 
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Figure 2.12. Scalability with Data Dimensionality (stream-speed=2000) 
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Figure 2.13. Scalability with Number of Clusters (stream-speed=2000) 
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the number of points processed per second) as opposed to the running time 
for two real data sets. Since CluStream requires some time to compute the 
initial set of micro-clusters, its precessing rate is lower than STREAM at the 
very beginning. However, once steady state is reached, CluStream becomes 
faster than STREAM in spite of the fact that it needs to store the snapshots 
to disk periodically. This is because STREAM takes a few iterations to make 
Ic-means clustering converge, whereas CluStream just needs to judge whether 
a set of points will be absorbed by the existing micro-clusters and insert into 
them appropriately. 

The key to the success of micro-cluster maintenance is high scalability. This 
is because this process is exposed to a potentially large volume of incoming 
data and needs to be implemented in an efficient and online fashion. The most 
time-consuming and frequent operation during micro-cluster maintenance is 
that of finding the closest micro-cluster for each newly arrived data point. It is 
clear that the complexity of this operation increases linearly with the number of 
micro-clusters. It is also evident that the number of micro-clusters maintained 
should be sufficiently larger than the number of input clusters in the data in 
order to obtain a high quality clustering. While the number of input clusters 
cannot be known a priori, it is instructive to examine the scalability behavior 
when the number of micro-clusters was fixed at a constant large factor of the 
number of input clusters. Therefore, for all the experiments in this section, we 
will fix the number of micro-clusters to 10 times the number of input clusters. 
We will present the scalability behavior of the CluStream algorithm with data 
dimensionality, and the number of natural clusters. 

The first series of data sets were generated by varying the dimensionality 
from 10 to 80, while fixing the number of points and input clusters. The first 
data set series B 100C5 indicates that it contains 1 OOK points and 5 clusters. The 
same notational convention is used for the second data set series B200C10 and 
the third one B400C20. Figure 2.12 shows the experimental results, from which 
one can see that CluStream has linear scalability with data dimensionality. For 
example, for dataset series B400C20, when the dimensionality increases from 
10 to 80, the running time increases less than 8 times from 55 seconds to 396 
seconds. 

Another three series of datasets were generated to test the scalability against 
the number of clusters by varying the number of input clusters from 5 to 40, 
while fixing the stream size and dimensionality. For example, the first data 
set series Bl OODlO indicates it contains lOOK points and 10 dimensions. The 
same convention is used for the other data sets. Figure 2.13 demonstrates that 
CluStream has linear scalability with the number of input clusters. 
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7. Discussion 
In this paper, we have discussed effective and efficient methods for clustering 

and classification of data streams. The techniques discussed in this paper utilize 
a micro-clustering approach in conjunction with a pyramidal time window. The 
technique can be used to cluster different kinds of data streams, as well as 
create a classifier for the data. The methods have clear advantages over recent 
techniques which try to cluster the whole stream at one time rather than viewing 
the stream as a changing process over time. The CluStream model provides a 
wide variety of functionality in characterizing data stream clusters over different 
time horizons in an evolving environment. 

This is achieved through a careful division of labor between the online sta- 
tistical data collection component and an offline analytical component. Thus, 
the process provides considerable flexibility to an analyst in a real-time and 
changing environment. In order to achieve these goals, we needed to the design 
the statistical storage process of the online component very carefully. The use 
of apyramidal time window assures that the essential statistics of evolving data 
streams can be captured without sacrificing the underlying space- and time- 
eficiency of the stream clustering process. 

The essential idea behind the CluStream model is to perform effective data 
summarization so that the underlying summary data can be used for a host of 
tasks such as clustering and classification. Therefore, the technique provides a 
framework upon which many other data mining tasks can be built. 

Notes 
1. Without loss of generality, we can assume that one unit of clock time is the smallest level of granularity. 

Thus, the 0-th order snapshots measure the time intervals at the smallest level of granularity. 
2. If the micro-cluster contains fewer than 2 . m points, then we simply find the average timestamp of 

all points in the cluster. 

3. The mean is equal to CFlt /n .  The standard deviation is equal to & ~ 2 t / n  - (CFlt/n)2. 
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Abstract With the advance in both hardware and software technologies, automated data 
generation and storage has become faster than ever. Such data is referred to as data 
streams. Streaming data is ubiquitous today and it is often a challenging task to 
store, analyze and visualize such rapid large volumes of data. Most conventional 
data mining techniques have to be adapted to run in a streaming environment, 
because of the underlying resource constraints in terms of memory and running 
time. Furthermore, the data stream may often show concept drift, because of 
which adaptation of conventional algorithms becomes more challenging. One 
such important conventional data mining problem is that of classification. In the 
classification problem, we attempt to model the class variable on the basis of one 
or more feature variables. While this problem has been extensively studied from 
a conventional mining perspective, it is a much more challenging problem in the 
data stream domain. In this chapter, we will re-visit the problem of classification 
from the data stream perspective. The techniques for this problem need to be 
thoroughly re-designed to address the issue of resource constraints and concept 
drift. This chapter reviews the state-of-the-art techniques in the literature along 
with their corresponding advantages and disadvantages. 

1. Introduction 
Classification problems [I 9,201 have been studied thoroughly as a major cat- 

egory of the data analysis tasks in machine learning, statistical inference [18] 
and data mining. Classification methods represent the set of supervised learning 
techniques where a set of dependent variables needs to be predicted based on 
another set of input attributes. There are two main distinctive approaches under 



40 DATA STREAMS: MODELS AND ALGORITHMS 

the supervised learning category: classification and regression. Classification 
is mainly concerned with categorical attributes as dependent variables; however 
regression is concerned with numerical attributes as its output. The classifica- 
tion process is divided into two phases: model building and model testing. In 
model building, a learning algorithm runs over a data set to induce a model that 
could be used in estimating an output. The quality of this estimation is assessed 
in the model testing phase. The model building process is referred to as train- 
ing as well. Classification techniques [19, 201 have attracted the attention of 
researchers due to the significance of their applications. A variety of methods 
such as decision trees, rule based methods, and neural networks are used for the 
classification problem. Many of these techniques have been designed to build 
classification models from static data sets where several passes over the stored 
data is possible. This is not possible in the case of data streams, in which it is 
necessary to process the entire data set in one pass. Furthermore, the classifi- 
cation problem needs to be re-designed in the context of concept drift, a unique 
problem in the case of data streams. 

The applications of data stream classification can vary from critical astro- 
nomical and geophysical applications [6] to real-time decision support in busi- 
ness and industrial applications [24,25]. There are several potential scenarios 
for such applications. For example, classification and analysis of biosensor 
measurements around a city for security reasons is an important emerging ap- 
plication. The analysis of simulation results and on-board sensor readings 
in scientific applications has its potential in changing the mission plan or the 
experimental settings in real time. Web log and clickstream analysis is an im- 
portant application in the electronic commerce domain. The classification of 
data streams generated from the marketplace such as stock market streaming 
information is another appealing application. Decision trees created from stock 
market data in distributed streaming environment have been used in MobiMine 
[24,25]. 

The process of adapting classification models to many of the above appli- 
cations is often non-trivial. The most important challenge with regard to clas- 
sification is that of concept drifting of evolving data streams. The process of 
concept drift results from the natural tendency of the underlying data to evolve 
over time. The classifier is most likely to be outdated after a time window due 
to the continuous change of the streaming information on a temporal basis. We 
discuss this issue along with a number of other challenges for the classification 
problem. Solution approaches used in addressing these issues are summarized 
in order to emphasize their advantages, and drawbacks. This summarization 
also provides some insight for other stream mining techniques due to the shared 
research issues across different applications. A thorough discussion of classi- 
fication techniques in data streams is given as a guide to researchers as well 
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as practitioners. The techniques are presented in an easy way with illustrative 
figures depicting each algorithm in a diagrammatic way. 

The chapter is organized as follows. Research issues with regard to the stream 
classification problems are discussed in section 2. Section 3 represents the ap- 
proaches proposed as solutions to address the previous research issues. Section 
4 provides a survey of the classification techniques in stream mining literature. 
Techniques surveyed include the Ensemble-based Classification [30], Very Fast 
Decision Trees (VFDT) [9] with its extensions [22], [23], On-Demand Classifi- 
cation [3], On-Line Information Network (OLIN) [26], Lightweight Classifica- 
tion (LWClass) [14], Scalable Classification Algorithm by Learning decision 
Patterns (SCALLOP) [12] and Adaptive Nearest Neighbor Classification for 
Data-streams (ANNCAD) 1271. This selection of techniques is based on the 
soundness of the techniques and how well the techniques addresses important 
research challenges. Finally, the chapter is concluded with a summary in section 
5. 

2. Research Issues 
In this section, we will address the primary research issues encountered in 

the context of stream mining. While many of these issues are shared across 
different stream mining applications, we discuss these issues with a special 
emphasis on the problem of classification [4,9, 10, 13, 14, 16, 17,21,28]. 

High Speed Nature of Data Streams: The inherent characteristic of 
data streams is its high speed. The algorithm should be able to adapt to 
the high speed nature of streaming information. The rate of building a 
classification model should be higher than the data rate. Furthermore, it 
is not possible to scan the data more than once. This is referred to as the 
one-pass constraint. 

Unbounded Memory Requirements: Classification techniques require 
data to be resident in memory for building the model. The huge amounts 
of data streams generated rapidly dictate the need for unbounded memory. 
This challenge has been addressed using load shedding, sampling, aggre- 
gation, and creating data synopsis. The memory issue is an important 
motivation behind many of the developed techniques in the area. 

Concept Drifting: Concept drifts change the classifier results over time. 
This is because of the change in the underlying data patterns. It is also 
referred to as data stream evolution [I]. This results in the model becom- 
ing stale and less relevant over time. The capture of such changes would 
help in updating the classifier model effectively. The use of an outdated 
model could lead to a very low classification accuracy. 
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rn Tradeoff between Accuracy and Efficiency: The main tradeoff in data 
stream mining algorithms is between the accuracy of the output with re- 
gard to the application and the time and space complexity. In many cases, 
approximation algorithms can guarantee error bounds, while maintaining 
a high level of efficiency. 

Challenges in Distributed Applications: A significant number of data 
stream applications run in mobile environments with limited bandwidth 
such as sensor networks and handheld devices. Thus knowledge structure 
representation is an important issue. After extracting models and patterns 
locally from data stream generators or receivers, it is important to transfer 
the data mining output to the user. The user could be a mobile user or 
a stationary one getting the results from mobile nodes. This is often a 
challenge because of the bandwidth limits in transferring data. Kargupta 
et al. [24] have addressed this problem by using Fourier transformations 
to efficiently represent decision trees for the purpose of transmission over 
limited bandwidth links. 

rn Visualization of data stream mining results: Visualization of tradi- 
tional data mining results on a desktop has been a research issue for more 
than a decade. Visualization of mining results in small screens of a Per- 
sonal Digital Assistant (PDA) for example is a real challenge and an open 
research problem. Given a scenario for a businessman on a move and 
the data are being streamed and analyzed on his PDA. The results of this 
analysis should be efficiently visualized in a way that allows him to take a 
quick decision. The pioneering work on representation of decision trees 
in a mobile device has been suggested by Kargupta et a1 [24]. 

Modelling change of mining results over time: In some cases, the user 
is not interested in mining data stream results, but how these results are 
changing over a temporal basis. The classification changes could help in 
understanding the change in data streams over time. 

Interactive Mining environment to satisfy user results: Mining data 
streams is a highly application oriented field. For example, the user 
should be able to change the classification parameters to serve the special 
needs of the user under the current context. The fast nature of data streams 
often makes it more difficult to incorporate user-interaction. 

rn The integration of data stream management systems and data stream 
mining approaches: The integration among storage, querying, mining 
and reasoning of the incoming stream would realize robust streaming 
systems that could be used in different applications [5,  71. Along this 
line, current database management systems have achieved this goal over 
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static stored data sets. However, this goal has not been fully realized for 
the case of data streams. An important future research issue is to integrate 
the stream mining algorithms with known stream management systems 
in order to design complete systems for stream processing. 

Hardware and other Technological Issues: The technological issue 
of mining data streams is an important one. How do we represent the 
data in such an environment in a compressed way? Which platforms 
are best suited such special real-time applications? Hardware issues 
are of special concerns. Small devices generating data streams are not 
designed for complex computations. Cmently emulators are used for 
such tasks and it is areal burden for data stream mining applications which 
run in resource-constrained environments. Novel hardware solutions are 
required to address this issue. 

Real time accuracy evaluation and formalization: In many cases, 
resource constrained methods work with a trade-off between accuracy and 
efficiency of the designed method. Therefore, we need a feedback of the 
current achieved accuracy with relation to the available resources. This 
is needed to adjust the algorithm parameters according to the available 
resources. This formalization would also help in making decisions about 
the reliability of the output. 

Among the above-mentioned issues, the first three are of special significance. 
Thus, we will use them as the basis for comparing different stream classification 
techniques in this chapter. We also note that many of these issues are shared 
among all mining techniques in streaming environment. The following section 
concisely summarizes the approaches that are used as solutions addressing the 
above issues. 

3. Solution Approaches 
Many of the afore-mentioned issues can be solved using well-established 

statistical and computational approaches. While, specific methods for stream 
classification will be discussed later, it is useful to understand the broad charac- 
teristics of different methods which are used to adapt conventional classification 
techniques to the case of data streams. We can categorize these solutions as 
data-based and task-based ones. In data-based solutions, the idea is to examine 
only a subset of the whole data set or to transform the data vertically or hori- 
zontally to an approximate smaller size data representation. Such an approach 
allows us to utilize many known data mining techniques to the case of data 
streams. On the other hand, in task based solutions, some standard algorithmic 
modification techniques can be used to achieve time and space efficient solu- 
tions [13]. Table 3.1 shows the data-based techniques, while Table 3.2 shows 
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1 I statistics I Independent I Relevant features 11 

- 

Table 3.1. Data Based Techniques 

n Techniaue I Definition I Pros I Cons 
U 

- - - - - - - . . ~- - I 
- . - - -- - . - . - - - .. - .~-. 

n Approximation I Algorithms with I Efficient I Resource adaptivity 

Cons 11 
Poor for 

anomaly detection 
Very poor for 

anomaly detection 
May ignore 

Relevant features 
Not sufficient 

for very 
fast stream 
May ignore 

Technique 
Sampling 

Load 
Shedding 
Sketching 

Synopsis 
Structure 

Aggregation 

11 Algorithms I Error Bounds 

Definition 
Choosing a data 

subset for analysis 
Ignoring a chunk 

of data 
Random projection 

on feature set 
Quick 

Transformation 

Compiling summary 

Pros 
Error Bounds 
Guaranteed 

Efficient 
for queries 
Extremely 
Efficient 

Analysis Task 
Independent 

Analysis Task 

Sliding 
Window 

Algorithm Output 
Granularity 

Table 3.2. Task Based Techniques 

General 

General 

Analyzing most 
recent streams 

Highly Resource 
aware technique 

with memory and 
fluctuating 
data rates 

the task-based techniques. Each table provides a definition, advantages and 
disadvantages of each technique. 

While the methods in Tables 3.1 and 3.2 provide an overview of the broad 
methods which can be used to adapt conventional methods to classification, it 
is more useful to study specific techniques which are expressly designed for the 
purpose of classification. In the next section, we will provide a review of these 
methods. 

with data rates 
not always possible 

Ignores part 
of stream 

Cost overhead 
of resource aware 

component 

4. Classification Techniques 
This section reviews the state-of-the-art of data stream classification tech- 

niques. We have provided an overview of some of the key methods, how 'well 
they address the research problems discussed earlier. 
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4.1 Ensemble Based Classification 
Wang et al. [30] have proposed a generic framework for mining concept 

drifting data streams. The framework is based on the observation that many 
data stream mining algorithms do not address the issue of concept drift in the 
evolving data. The idea is based on using an ensemble of classification models 
such as decision trees using C4.5, RIPPER, nahe Bayesian and others to vote 
for the classification output to increase the accuracy of the predicted output. 

This framework was developed to address three research challenges in data 
stream classification: 

1. Concept Drift: The accuracy of the output of many classifiers is very 
sensitive to concept drifts in the evolving streams. At the same time, one 
does not want to remove excessive parts of the stream, when there is no 
concept drift. Therefore, a method needs to be designed to decide which 
part of the stream to be used for the classification process. 

2. Efficiency: The process of building classifiers is a complex computa- 
tional task and the update of the model due to concept drifts is a compli- 
cated process. This is especially relevant in the case of high speed data 
streams. 

3. Robustness: Ensemble based classification has traditionally been used 
in order to improve robustness. The key idea is to avoid the problem of 
overfitting of individual classifiers. However, it is often a challenging 
task to use the ensemble effectively because of the high speed nature of 
the data streams. 

An important motivation behind the framework is to deal with the expiration of 
old data streams. The idea of using the most recent data streams to build and 
use the developed classifiers may not be valid for most applications. Although 
the old streams can affect the accuracy of the classification model in a negative 
way, it is still important to keep track of this data in the current model. The 
work in [30] shows that it is possible to use weighted ensemble classifiers in 
order to achieve this goal. 

The work in [30] uses weighted classifier ensembles according to the current 
accuracy of each classifier used in the ensemble. The weight of any classifier 
is calculated and contributed to predict the final output. The weight of each 
classifier may vary as the data stream evolves, and a given classifier may be- 
come more or less important on a particular sequential chunk of the data. The 
framework has outperformed single classifiers experimentally. This is partly 
because of the greater robustness of the ensemble, and partly because of more 
effective tracking of the change in the underlying structure of the data. More 
interesting variations of similar concepts may be found in [I 11. Figure 3.1 
depicts the proposed framework. 
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4.2 Very Fast Decision Trees (VFDT) 

Domingos and Hulten [9,22] have developed a decision tree approach which 
is referred to as Very Fast Decision Trees (VFDT). It is a decision tree learning 
system based on Hoeffding trees. It splits the tree using the current best attribute 
taking into consideration that the number of examples used satisfies the Hoeffd- 
ing bound. Such a technique has the property that its output is (asymptotically) 
nearly identical to that of a conventional learner. VFDT is an extended version 
of such a method which can address the research issues of data streams. These 
research issues are: 

Ties of attributes: Such ties occur when two or more attributes have close 
values of the splitting criteria such as information gain or gini index. We 
note that at such a moment of the decision tree growth phase, one must 
make a decision between two or more attributes based on only the set 
of records received so far. While it is undesirable to delay such split 
decisions indefinitely, we would like to do so at a point when the errors 
are acceptable. 

Bounded memory: The tree can grow till the algorithm runs out of mem- 
ory. This results in a number of issues related to effective maintenance 
of the tree. 

Efficiency and Accuracy: This is an inherent characteristic of all data 
stream algorithms. 

The extension of Hoeffding trees in VFDT has been done using the following 
techniques. 

The key question during the construction of the decision tree is the choice 
of attributes to be used for splits. Approximate ties on attributes are 
broken using a user-specified threshold of acceptable error measure for 
the output. By using this approach, a crisp criterion can be determined 
on when a split (based on the inherently incomplete information from 
the current data stream) provides acceptable error. In particular, the 
Hoeffding inequality provides the necessary bound on the correctness of 
the choice of split variable. It can be shown for any small value of 6, 
that a particular choice of the split variable is the correct choice (same 
as conventional learner) with probability at least 1 - 6, if a sufficient 
number of stream records have been processed. This "sufficient number" 
increases at the relatively modest rate of log(1/6). The bound on the 
accuracy of each split can then be extrapolated to the behavior of the 
entire decision tree. We note that the stream decision tree will provide 
the same result as the conventional decision tree, if for every node along 
the path for given test instance, the same choice of split is used. This 
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can be used to show that the behavior of the stream decision tree for a 
particular test instance differs from the conventional decision tree with 
probability at most 1 - S/p,  where p is the probability that a record is 
assigned to a leaf at each level. 

Bounded memory has been addressed by de-activating the least promising 
leaves and ignoring the poor attributes. The calculation of these poor 
attributes is done through the difference between the splitting criteria of 
the highest and lowest attributes. If the difference is greater than a pre- 
specified value, the attribute with the lowest splitting measure will be 
freed from memory. 

The VFDT system is inherently 110 bound; in other words, the time for 
processing the example is lower than the time required to read it from 
disk. This is because of the Hoeffding tree-based approach with a crisp 
criterion for tree growth and splits. Such an approach can make clear 
decisions at various points of the tree construction algorithm without 
having to re-scan the data. Furthermore, the computation of the splitting 
criteria is done in a batch processing mode rather than online processing. 
This significantly saves the time of recalculating the criteria for all the 
attributes with each incoming record of the stream. The accuracy of the 
output can be further improved using multiple scans in the case of low 
data rates. 

All the above improvements have been tested using special synthetic data sets. 
The experiments have proved efficiency of these improvements. Figure 3.2 
depicts the VFDT learning system. The VFDT has been extended to address 
the problem of concept drift in evolving data streams. The new framework 
has been termed as CVFDT [22]. It runs VFDT over fixed sliding windows in 
order to have the most updated classifier. The change occurs when the splitting 
criteria changes significantly among the input attributes. 

Jin and Agrawal[23] have extended the VFDT algorithm to efficiently pro- 
cess numerical attributes and reduce the sample size calculated using the Ho- 
effding bound. The former objective has been addressed using their Numeri- 
cal Interval Pruning (NIP) technique. The pruning is done by fist  creating a 
histogram for each interval of numbers. The least promising intervals to be 
branched are pruned to reduce the memory space. The experimental results 
show an average of 39% of space reduction by using NIP. The reduction of 
sample size is done by using properties of information gain functions. The 
derived method using multivariate delta method has a guarantee of a reduction 
of sample size over the Hoeffding inequality with the same accuracy. The ex- 
periments show a reduction of 37% of the sample size by using the proposed 
method. 
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4.3 On Demand Classification 
Aggarwal et al. have adopted the idea of micro-clusters introduced in CluS- 

tream [2] in On-Demand classification in [3]. The on-demand classification 
method divides the classification approach into two components. One compo- 
nent continuously stores summarized statistics about the data streams and the 
second one continuously uses the summary statistics to perform the classifica- 
tion. The summary statistics are represented in the form of class-label specific 
micro-clusters. This means that each micro-cluster is associated with a specific 
class label which defines the class label of the points in it. We note that both 
components of the approach can be used in online fashion, and therefore the 
approach is referred to as an on-demand classijication method. This is because 
the set of test instances could arrive in the form of a data stream and can be 
classified efficiently on demand. At the same time, the summary statistics (and 
therefore training model) can be efficiently updated whenever new data arrives. 
The great flexibility of such an approach can be very useful in a variety of 
applications. 

At any given moment in time, the current set of micro-clusters can be used to 
perform the classification. The main motivation behind the technique is that the 
classification model should be defined over a time horizon which depends on 
the nature of the concept drift and data evolution. When there is smaller concept 
drift, we need a larger time horizon in order to ensure robustness. In the event 
of greater concept drift, we require smaller time horizons. One key property of 
micro-clusters (referred to as the subtractiveproperty) ensures that it is possible 
to compute horizon-specific statistics. As a result it is possible to perform 
the classification over a wide variety of time horizons. A hold out training 
stream is used to decide the size of the horizon on which the classification is 
performed. By using a well-chosen horizon it is possible to achieve a high 
level of classification accuracy. Figure 3.3 depicts the classification on demand 
framework. 

4.4 Online Information Network (OLIN) 
Last [26] has proposed an online classification system which can adapt to 

concept drift. The system re-builds the classification model with the most recent 
examples. By using the error-rate as a guide to concept drift, the frequency of 
model building and the window size is adjusted over time. 

The system uses info-fuzzy techniques for building a tree-like classification 
model. It uses information theory to calculate the window size. The main idea 
behind the system is to change the sliding window of the model reconstruction 
according to the classification error rate. If the model is stable, the window size 
increases. Thus the frequency of model building decreases. The info-fuzzy 
technique for building a tree-like classification model is referred to as the Info- 
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Table 3.3. Typical LWClass Training Results 
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Fuzzy Network (IFN). The tree is different than conventional decision trees in 
that each level of the tree represents only one attribute except the root node layer. 
The nodes represent different values of the attribute. The process of inducing 
the class label is similar to the one of conventional decision trees. The process 
of constructing this tree has been termed as Information Network (IN). The IN 
technique uses a similar procedure of building conventional decision trees by 
determining if the split of an attribute would decrease the entropy or not. The 
measure used is mutual conditional information that assesses the dependency 
between the current input attribute under examination and the output attribute. 
At each iteration, the algorithm chooses the attribute with the maximum mutual 
information and adds a layer with each node represents a different value of this 
attribute. The iterations stop once there is no increase in the mutual information 
measure for any of the remaining attributes that have not been considered in the 
tree. OLIN system repeatedly uses the IN algorithm for building a new classifi- 
cation model. The system uses the information theory to calculate the window 
size (refers to number of examples). It uses a less conservative measure than 
Hoeffding bound used in VFDT [9,22] reviewed earlier in this chapter. This 
measure is derived from the mutual conditional information in the IN algorithm 
by applying the likelihood ratio test to assess the statistical significance of the 
mutual information. Subsequently, we change the window size of the model 
reconstruction according to the classification error rate. The error rate is cal- 
culated by measuring the difference between the error rate during the training 
at one hand and the error rate during the model validation at the other hand. A 
significance increase in the error rate indicates a high probability of a concept 
drift. The window size changes according to the value of this increase. Figure 
3.4 shows a simple flow chart of the OLIN system. 

4.5 LWClass Algorithm 

. . 

Gaber et a1 [14] have proposed Lightweight Classification techniques termed 
as LWClass. LWClass is based on Algorithm Output Granularity. The algo- 
rithm output granularity (AOG) introduces the first resource-aware data analy- 
sis approach that can cope with fluctuating data rates according to the available 
memory and the processing speed. The AOG performs the local data analysis 
on resource constrained devices that generate or receive streams of informa- 

. . I Category I Contributing I 
. . . . . . . . . . . . . . . ... I 
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tion. AOG has three stages of mining, adaptation and knowledge integration as 
shown in Figure 3.5 [14]. 

LWClass starts with determining the number of instances that could be resi- 
dent in memory according to the available space. Once a classified data record 
arrives, the algorithm searches for the nearest instance already stored in the main 
memory. This is done using a pre-specified distance threshold. This threshold 
represents the similarity measure acceptable by the algorithm to consider two 
or more data records as an entry into a matrix. This matrix is a summarized 
version of the original data set. If the algorithm finds a nearest neighbor, it 
checks the class label. If the class label is the same, it increases the weight for 
this instance by one, otherwise it decrements the weight by one. If the weight 
is decremented down to zero, this entry will be released from the memory con- 
serving the limited memory on streaming applications. The algorithm output 
granularity is controlled by the distance threshold value and is changing over 
time to cope with the high speed of the incoming data elements. The algorithm 
procedure could be described as follows: 

1. Each record in the data stream contains attribute values for al ,  a2,. . ., an 
attributes and the class category. 

2. According to the data rate and the available memory, the algorithm output 
granularity is applied as follows: 

2.1 Measure the distance between the new record and the stored ones. 

2.2 If the distance is less than a threshold, store the average of these 
two records and increase the weight for this average as an entry by 
1. (The threshold value determines the algorithm accuracy and is 
chosen according to the available memory and data rate that de- 
termines the algorithm rate). This is in case that both items have 
the same class category. If they have different class categories, the 
weight is decreased by 1 and released from memory if the weight 
reaches zero. 

2.3 After a time threshold for the training, we come up with a matrix 
represented in Table 3.3. 

3. Using Table 3.3, the unlabeled data records could be classified as follows. 
According to the available time for the classification process, we choose 
nearest K-table entries and these entries are variable according to the time 
needed by the process. 

4. Find the majority class category taking into account the calculated weights 
from the K entries. This will be the output for this classification task. 
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4.6 ANNCAD Algorithm 

Law et a1 [27] have proposed an incremental classification algorithm termed 
as Adaptive Nearest Neighbor Classification for Data-streams (ANNCAD). 
The algorithm uses Haar Wavelets Transformation for multi-resolution data 
representation. A grid-based representation at each level is used. 

The process of classification starts with attempting to classi& the data record 
according to the majority nearest neighbors at finer levels. If the finer levels are 
unable to differentiate between the classes with a pre-specified threshold, the 
coarser levels are used in a hierarchical way. To address the concept drift prob- 
lem of the evolving data streams, an exponential fade factor is used to decrease 
the weight of old data in the classification process. Ensemble classifiers are 
used to overcome the errors of initial quantization of data. Figure 3.6 depicts 
the ANNCAD framework. 

Experimental results over real data sets have proved the achieved accuracy 
over the VFDT and CVFDT discussed earlier in this section. The drawback 
of this technique represented in inability of dealing with sudden concept drifts 
as the exponential fade factor takes a while to have its effect felt. In fact, the 
choice of the exponential fade factor is an inherent flexibility which could lead 
to over-estimation or under-estimation of the rate of concept drift. Both errors 
would result in a reduction in accuracy. 

4.7 SCALLOP Algorithm 
Ferrer-Troyano et al. [12] have proposed a scalable classification algorithm 

for numerical data streams. This is one of the few rule-based classifiers for 
data streams. It is inherently difficult to construct rule based classifiers for 
data streams, because of the difficulty in maintaining the underlying rule statis- 
tics. The algorithm has been termed as Scalable Classification Algorithm by 
Learning decision Patterns (SCALLOP). 

The algorithm starts by reading a number of user-specified labeled records. 
A number of rules are created for each class from these records. Subsequently, 
the key issue is to effectively maintain the rule set after arrival of each new 
record. On the arrival of a new record, there are three cases: 

a) Positive covering: This is the case of a new record that strengthens a 
current discovered rule. 

b) Possible expansion: This is the case of a new record that is associated 
with at least one rule, but is not covered by any currently discovered rule. 

c) Negative covering: This is the case of a new record that weakens a 
currently discovered rule. 

For each of the above cases, a different procedure is used as follows: 



DATA STREAMS: MODELS AND ALGORITHMS 

a) Positive covering: The positive support and confidence of the existing 
rule is re-calculated. 

b) Possible expansion: In this case, the rule is extended if it satisfies two 
conditions: 

- It is bounded within a user-specified growth bounds to avoid a pos- 
sible wrong expansion of the rule. 

- There is no intersection between the expanded rule and any already 
discovered rule associated with the same class label. 

c) Negative covering: In this case, the negative support and confidence is 
re-calculated. If the confidence is less than a minimum user-specified 
threshold, a new rule is added. 

After reading a pre-defined number of records, the process of rule refining 
is performed. Rules in the same class and within a user-defined acceptable 
distance measure are merged. At the same time, care is taken to ensure that 
these rules do not intersect with rules associated with other class labels. The 
resulting hypercube of the merged rules should also be within certain growth 
bounds. The algorithm also has a refinement stage. This stage releases the 
uninteresting rules from the current model. In particular, the rules that have 
less than the minimum positive support are released. Furthermore, the rules that 
are not covered by at least one of the records of the last user-defined number 
of received records are released. Figure 3.7 shows an illustration of the basic 
process. 

Finally a voting-based classification technique is used to classify the unla- 
beled records. If there is a rule covers the current record, the label associated 
with that rule is used as the classifier output. Otherwise, a voting over the 
current rules within the growth bounds is used to infer the class label. 

5. Summary 
Stream classification techniques have several important applications in busi- 

ness, industry and science. This chapter reviews the research problems in data 
stream classification. Several approaches in the literature have been summa- 
rized with their advantages and drawbacks. While the selection of the tech- 
niques is based on the performance and quality of addressing the research chal- 
lenges, there are a number of other methods [11, 8, 15, 22, 311 which we 
have not discussed in greater detail in this chapter. Many of these techniques 
are developed along similar lines as one or more techniques presented in this 
chapter. 

The major research challenges in data stream classification are represented in 
concept drifting, resource adaptivity, high data rates, and the unbounded mem- 
ory requirements. While many methods have been proposed to address some of 
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these issues, they are often unable to address these issues simultaneously. Table 
3.4 summarizes the previously reviewed techniques in terms of addressing the 
above challenges. The area of data stream classification is still in its infancy. 
A number of open challenges still remain in stream classification algorithms; 
particular in respect to concept drift and resource adaptive classification. 
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Abstract Frequent pattern mining is a core data mining operation and has been exten- 
sively studied over the last decade. Recently, mining frequent patterns over data 
streams have attracted a lot of research interests. Compared with other streaming 
queries, frequent pattern mining poses great challenges due to high memory and 
computational costs, and accuracy requirement of the mining results. 

In this chapter, we overview the state-of-art techniques to mine frequent pat- 
terns over data streams. We also introduce a new approach for this problem, 
which makes two major contributions. First, this one pass algorithm for frequent 
itemset mining has deterministic bounds on the accuracy, and does not require 
any out-of-core summary structure. Second, because the one pass algorithm does 
not produce any false negatives, it can be easily extended to a two pass accurate 
algorithm. The two pass algorithm is very memory efficient. 

1 Introduction 
Frequent pattern mining focuses on discovering frequently occurring patterns 

from different types of datasets, including unstructured ones, such as transaction 
and text datasets, semi-structured ones, such as XML datasets, and structured 
ones, such as graph datasets. The patterns can be itemsets, sequences, sub- 
trees, or subgraphs, etc., depending on the mining tasks and targeting datasets. 
Frequent patterns can not only effectively summarize the underlying datasets, 
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providing key sights into the data, but also serve as the basic tool for many other 
data mining tasks, including association rule mining, classification, clustering, 
and change detection among others [2 1,37,20,24]. 

Many efficient frequent pattern algorithms have been developed in the last 
decade [1,17,18,35,26,33,36]. These algorithms typically require datasets to 
be stored in persistent storage and involve two or more passes over the dataset. 
Recently, there has been much interest in data arriving in the form of continuous 
and infinite data streams. In a streaming environment, a mining algorithm must 
take only a single pass over the data [4]. Such algorithms can only guarantee 
an approximate result. 

Compared with other stream processing tasks, the unique challenges in dis- 
covering frequent patterns are in three-fold. First, frequent pattern mining needs 
to search a space with an exponential number of patterns. The cardinality of the 
answering set itself which contains all frequent patterns can be very large too. 
In particular, it can cost much more space to generate an approximate answer- 
ing set for frequent patterns in a streaming environment. Therefore, the mining 
algorithm needs to be very memory-efficient. Second, frequent pattern mining 
relies on the down-closure property to prune infrequent patterns and generate 
the frequent ones. This process (even without the streaming constraint) is very 
compute-intensive. Consequently, keeping up the pace with high- speed data 
streams can be very hard for a frequent pattern-mining task. Given these chal- 
lenges, a more important issue is the quality of the approximate mining results. 
The more accurate results usually require more memory and computations. 
What should be the acceptable mining results to a data miner? To deal with this 
problem, a mining algorithm needs to provide users the flexibility to control the 
accuracy of the final mining results. 

In the last several years, several new mining algorithms have been proposed 
to find frequent patterns over data streams. In the next chapter, we will overview 
these new algorithms. 

2. Overview 

2.1 Frequent Pattern Mining: Problem Definition 
Let the dataset D be a collection of objects, i.e. D = {o l ,  0 2 ,  . , 0 1 ~ 1 ) .  

Let P be the set of all possible (interesting) patterns occurring in D, g be the 
counting function g : P x 0 + N, where 0 is the set of objects, and N is 
the set of nonnegative integers. Given parameters p E P ,  and o  E 0 ,  g(p, o) 
returns the number of times p occurs in o. The support of a pattern p E P in 
the dataset D is defined as 
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where, I is an indicator function: if g(p, oj) > 0, I(g(p, oj)) = 1; otherwise, 
I(g(p, oj)) = 0. Given a support level 6, the frequent patterns of P in D is the 
set of patterns in P which have support greater than or equal to the 6. 

The first and arguably the most important frequent pattern-mining task is 
frequent itemsets mining, proposed by Rakesh Agrawal et.al. in 1993 [2]. In 
this setting, the objects in the dataset D are transactions or sets of items. Let 
Item be the set of all possible items in the dataset D. Then the dataset D can 
be represented as D = (11, . , I ID l ) ,  where Ij c Item, Vj, 1 < j 5 I Dl. 
The set of all possible patterns P is the power-set of Item. Note that the set of 
all possible objects 0 is the same as P in this setting. The counting function 
g is defined upon on the set containing (C) relationship. In other words, if the 
itemset p is contained in Ij ( p  Ij), the function g(p, Ij) returns 1; otherwise, 
it returns 0. For instance, given a dataset D={{A,B,D,E), {B,C,E),{A,B,E), 
{A,B,C), {A,C), {B,C)), and a support level 6 = 50%, the frequent patterns 
are (4, {B) ,  {C), and {B ,  C). 

The majority of work in mining frequent patterns over data streams focuses 
on fiequent itemsets mining. Many techniques developed in this setting can 
be served as a basis for mining other more complicated pattern mining tasks, 
such as graph mining [21]. To simplify the discussion, this chapter will focus 
on mining frequent itemsets over data streams. 

2.2 Data Streams 

In a data stream, transactions arrive continuously and the volume of transac- 
tions can be potentially infinite. Formally, a data stream D can be defined as a 
sequence of transactions, D = (tl, t2, . - , ti, - - 0  ), where ti is the i-th arrived 
transaction. To process and mine data streams, different window models are of- 
ten used. A window is a subsequence between i-th and j-th arrived transactions, 
denoted as W [i, j] = (ti, ti+l, - - - , tj), i < j. A user can ask different types 
of frequent pattern-mining questions over different type of window models. 
Landmark window: In this model, we are interested in, from a starting time- 
point i to the current timepoint t, what are the frequent itemsets. In other words, 
we are trying to find the frequent itemsets over the window W[i, t]. A special 
case of the landmark window is when i = 1. In this case, we are interested 
in the frequent itemsets over the entire data stream. Clearly, the difficulty in 
solving the special case is essentially the same as the more general cases, and 
all of them require an efficient single-pass mining algorithm. For simplicity, 
we will focus on the case where the Entire Data Stream is the target. 

Note that in this model, we treat each time-point after the starting point 
equally important. However, in many cases, we are more interested in the 
recent time-points. The following two models focus on such cases: 
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Sliding window: Given the length of the sliding window w and current time- 
point t, we are interested in the frequent pattern time in the window W [t - w + 
1, t]. As time changes, the window will keep its size and move along with the 
current time point. In this model, we are not interested in the data which arrived 
before the timepoint t - w + 1. 
Damped window model: This model assigns more weights to the recently 
arrived transactions. A simple way to do that is to define a decay rate [7], and 
use this rate to update the previously arrived transactions (by multiplication) 
as a new transaction arrives. Correspondingly, the count of an itemset is also 
defined based on the weight of each transaction. 

In the next subsection, we will overview the algorithms for mining frequent 
itemsets on these three different window models over data streams. In addition, 
we would like to point out that besides the three windows we introduced above, 
Jiawei Han et. al. proposed another model called tilted-time window model. In 
this model, we are interested in frequent itemsets over a set of windows. Each 
window corresponds to different time granularity based on their recency. For 
example, we are interested in every minute for the last hour, every five minutes 
for the previous hour, every ten minutes for the hour before that. Moreover, 
the transactions inside each window are also weighted. Such model can allow 
us to pose more complicated queries over data stream. Giannella et. al. have 
developed a variant of FP-tree, called FP-stream, for dynamically updating 
frequent patterns on streaming data and answering the approximate frequent 
itemsets for even arbitrary time intervals [15]. 

2.3 Mining Algorithms 

1341 
Sliding Window I I Moment 

Entire Data Stream 

I 1111 
Damped Window I estDec 

[71 
Closed: Closed frequent itemsets 

All 

Lossy Counting 
1281 

FPDM 

Table 4.1. Algorithms for Frequent Itemsets Mining over Data Streams 

Closed 

Table 4.1 lists the algorithms which have been proposed for mining frequent 
itemsets in the last several years. Note that All suggests to find all of the frequent 
itemsets given support level 8. Closed frequent itemsets are itemsets that are 
frequent but have higher frequency than all of their supersets. (If an itemset p 
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is a subset of itemset q, q is called the superset of p.) In the following, we will 
briefly introduce these algorithms and their basic ideas. 
Mining Algorithms for Entire Data Stream Manku and Motwani proposed 
the first one-pass algorithm, Lossy Counting, to find all frequent itemsets over 
a data stream 1281. Their algorithm is false-positive oriented in the sense that it 
does not allow false negatives, and has a provable bound on false positives. It 
uses a user-defined error parameter E to control the quality of the answering set 
for a given support level 0. More precisely, its answering set is guaranteed to 
have all itemsets whose frequency exceeds 0, and contains no itemsets whose 
true frequency is less than 0 - E. In other words, the itemsets whose frequency 
are between 0 - E and 0 possibly appear in the answering set, and are the false 
positives. 

Recently, Yu and his colleagues proposed FPDM, which is a false-negative 
oriented approach, for mining frequent itemsets over data streams [34]. Their 
algorithm does not allow false positive, and has a high-probability to find item- 
sets which are truly frequent. In particular, they use a user-defined parameter 6 
to control the probability to find the frequent itemsets at support level 0. Specif- 
ically, the answering set does not include any itemsets whose frequency is less 
than 0, and include any itemsets whose frequency exceeds 0 with probability 
of at least 1 - 6. It utilizes the Chernoff bound to achieve such quality control 
for the answering set. 

Both algorithms logically partitioned the data stream into equally sized seg- 
ments, and find the potentially frequent itemsets for each segment. They ag- 
gregate these locally frequent itemsets and further prune the infrequent ones. 
However, the number of transactions in each segment as well as the method 
to define potentially frequent itemsets is different for these two methods. In 
Lossy Counting, the number of transactions in a segment is k x [ l / ~ l ,  and an 
itemset which occurs more than k times in a segment is potentially frequent. 
In FDPM, the number of transactions in a segment is k x no, where no is the 
required number of observations in order to achieve Chernoff bound with the 
user-defined parameter 6. In this case, an itemset whose frequency exceeds 
0 - E, where E is computed by Chernoff bound in terms of 6 and the number 
of observations (k x no). Note that k is a parameter (batch size) to control the 
size of each segment. 

To theoretically estimate the space requirement for both algorithms, we con- 
sider each transaction including only a single item, and the number of transac- 
tions in the entire data stream is ID/. Lossy Counting will take O( l /dog(~(DI) )  
to find frequent items (1-itemsets), and FPDM-1 (the simple version of FPDM 
on finding frequent items) will need O((2 + 21n(2/6))/0). 

Note that different approaches have different advantages and disadvantages. 
For instance, for the false positive approach, if a second pass is allowed, we can 
easily eliminate false positives. For the false negative approach, we can have 
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a small answering set which have almost all the frequent itemsets, but might 
miss some of them (with very small probability controlled by 6). 
Sliding Window Chi et al. have studied the problem on mining closed frequent 
itemsets over a sliding window of a data stream [12]. In particular, they assume 
the width of sliding window is not very large, therefore, the transactions of each 
sliding window could be held in the main memory. Clear, such assumption is 
very close to the problem setting of the incremental association rule mining [lo]. 
But their focus is on how to maintain the closed frequent itemsets in an efficient 
way. 

To deal with this problem, they proposed a new mining algorithm, called 
MOMENT. It utilizes the heuristic that in most cases, the sets of frequent item- 
sets are relatively stable for the consecutive sliding windows in the data stream. 
Specifically, such stability can be expressed as the fact that the boundary be- 
tween the frequent itemsets and infrequent itemsets, and the boundary between 
closed frequent itemsets and the rest of itemsets move very slowly. Therefore, 
instead of generating all closed frequent itemsets for each window, they focus 
on monitoring such boundaries. As the key of this algorithm, an in-memory 
data structure, the closed enumeration tree (CET), is developed to efficiently 
monitor closed frequent itemsets as well as itemsets that form the boundary 
between the closed frequent itemsets and the rest of the itemsets. An efficient 
mechanism has been proposed to update the CET as the sliding window moves 
so that the boundary maintains for each sliding window. 
Damped Window Model Chang and Lee studied the problem to find recently 
frequent itemsets over data streams using the damped window model. Specif- 
ically, in their model, the weight for an existing transaction in the data stream 
reduces by a decay factor,d, as a new transaction arrives. For example, the 
initial weight of a newly arrived transaction has weight 1, and after another 
transaction arrives, it will be reduced as d = (1 x d). 

To keep tracking down the frequent itemsets in such a setting, they propose a 
new algorithm, estDec, which process the transaction one by one. It maintains 
a lattice for recording the potentially frequent itemsets and their counts, and 
updates the lattice for each new transaction correspondingly. Note that theoret- 
ically, the count of each itemset in the lattice will change as a new transaction 
arrives. But by recording an additional information for each itemset p, the 
time-point of the most recent transaction contains p, the algorithm only needs 
to update the counts for the itemsets which are the subsets of newly arrived 
transaction. It will reduce their counts using the constant factor d, and then 
increases them by one. Further, it inserts the subsets of the current transac- 
tion which are potentially frequent into the lattice. It uses a method similar to 
Carma [I 91 to estimate the frequency of these newly inserted itemsets. 
Discussion Among the above three different problem settings, we can see that 
the first one, finding the frequent itemsets over the entire data stream, is the 
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most challenging and fundamentally important one. It can often serve as the 
basis to solve the latter two. For example, the current sliding window model 
studied in MOMENT is very similar to the incremental data mining. A more 
difficult problem is the case when the data in a sliding window cannot be held 
in the main memory. Clearly, in such case, we need single-pass algorithms for 
even for a single sliding window. The main difference between the damped 
window model and entire data stream is that the counts of itemsets need to be 
adjusted for each new arrival transactions in the damped window model even 
the itemsets do not appear in these transactions. 

In the next Section, we will introduce a new mining algorithm StreamMining 
we proposed recently to find frequent itemsets over the entire data stream. 
It is a false-positive approach (similar to Lossy Counting). It has provable 
(user-defined) deterministic bounds on accuracy and very memory efficient. 
In Section 4, we will review research works closely related with the field on 
frequent pattern mining over data streams. Finally, we will conclude this chapter 
and discuss directions for future work (Section 5). 

3. New Algorithm 
This section describes our new algorithm for mining frequent itemsets in a 

stream. Initially, we discuss a new approach for finding frequent items from 
Karp et al. [25]. We then discuss the challenges in extending this idea to frequent 
itemset mining, and finally outline our ideas for addressing these issues. 

3.1 KPS's algorithm 
Our work is derived from the recent work by Karp, Papadimitriou and 

Shenker on finding frequent elements (or 1-itemset) [25]. Formally, given a 
sequence of length N and a threshold 0 (0 < O < I), the goal of their work is 
to determine the elements that occur with frequency greater than NO. 

A trivial algorithm for this will involve counting the frequency of all distinct 
elements, and checking if any of them has the desired frequency. If there are n 
distinct elements, this will require O(n)  memory. 

Their approach requires only 0 ( 1 / O )  memory. Their approach can be viewed 
as a generalization of the following simple algorithm for finding the majority 
element in a sequence. A majority element is an element that appears more than 
half the time in an entire sequence. We find two distinct elements and eliminate 
them from the sequence. We repeat this process until only one distinct element 
remains in the sequence. If a majority element exists in the sequence, it will 
be left after this elimination. At the same time, any element remaining in the 
sequence is not necessarily the majority element. We can take another pass 
over the original sequence and check if the frequency of the remaining element 
is greater than N/2.  



68 DATA STREAMS: MODELS AND ALGORITHMS 

FindingFrequentItems(Sequence S,  8)  
global Set P ;  // Set o f  Potentially 
P + 8; // Frequent Items 
foreach ( s  E S )  // each item in  S 

i f s  E P  
%count + +; 

else 
P +- { s )  U P ;  
s.count = 1;  
i f  ( P I  2 w01 

foreach (p  E P )  
p.count - -; 
if  p.count = 0 

P ' P - { P I ;  
Output ( P )  ; 

Figure 4. I .  Karp et al. Algorithm to Find Frequent Items 

The idea can be generalized to an arbitrary 0. We can proceed as follows. We 
pick any 118 distinct elements in the sequence and eliminate them together. This 
can be repeated until no more than 110 distinct elements remain in the sequence. 
It can be claimed that any element appearing more than NO times will be left in 
the sequence. The reason is that the elimination can only be performed at most 
N/( l /O)  = NO times. During each such elimination, any distinct element is 
removed at most once. Hence, for each distinct element, the total number of 
eliminations during the entire process is at most NO. Any element appearing 
more than NO times will remain in the sequence. Note, however, the elements 
left in the sequence do not necessarily appear with frequency greater than NO. 
Thus, this approach will provide a superset of the elements which occur more 
than NO times. 

Such processing can be performed to take only a single pass on the sequence, 
as we show in Figure 4.1. P is the set of potentially frequent items. We maintain 
a count for each item in the set P .  This set is initially empty. As we process 
a new item from a sequence, we check if it is in the set P .  If yes, its count 
is incremented, otherwise, it is inserted with a count of 1. When the size of 
the set P becomes larger than [1/81, we decrement the count of each item in 
P ,  and eliminate any item whose count has now become 0. This processing 
is equivalent to the eliminations we described earlier. Note that this algorithm 
requires only R(l/O) space. It computes a superset of frequent items. To find 
the precise set of frequent items, another pass can be taken on the sequence, 
and the frequency of all remaining elements can be counted. 
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3.2 Issues In Frequent Itemset Mining 
In this paper, we build a frequent itemset mining algorithm using the above 

basic idea. There are three main challenges when we apply this idea to mining 
frequent itemsets, which we summarize below. 

1 Dealing with Transaction Sequences: The algorithm from Karp et al. 
assumes that a sequence is comprised of elements, i.e., each transaction 
in the sequence only contains one-items. In frequent itemset mining, each 
transaction has a number of items, and the length of every transaction can 
also be different. 

2 Dealing with k-itemsets: Karp et al.3 algorithm only finds the frequent 
items, or 1 -itemsets. In a frequent itemset mining algorithm, we need to 
find all k-itemsets, k 2 1, in a single pass. 

Note that their algorithm can be directly extended to find i-itemsets in 
the case where each transaction has a fixed length, 1. This can be done 
by eliminating a group of (116) x (5) different i-itemsets together. This, 
however, requires Cl((l/O) x (!)) space, which becomes extremely high 
when 1 and i are large. Furthermore, in our problem, we have to find all 
i-itemsets, i 2 1, in a single pass. 

3 Providing an Accuracy Bound: Karp et al. 's algorithm can provably find a 
superset of the frequent items. However, no accuracy bound is provided 
for the item(set)s in the superset, which we call the potential frequent 
item(set)s. For example, even if an item appears just a single time, it can 
still possibly appear in the superset reported by the algorithm. In frequent 
itemset mining, we will like to improve above result, and provide a bound 
on the frequency of the itemsets that are reported by the algorithm. 

3.3 Key Ideas 

We now outline how we can address the three challenges we listed above. 
Dealing with k-itemsets in a Stream of Transactions: Compared with the 
problem of finding frequent items, the challenges in finding frequent itemsets 
from a transaction sequence mainly arise due to the large number of poten- 
tial frequent itemsets. This also results in high memory costs. As we stated 
previously, a direct application of the idea from Karp et al. will require 
Cl((l/O) x ( 8 ) )  space to find potential frequent i-itemsets, where 1 is the length 
of each transaction. This approach is prohibitively expensive when 1 and i are 
large, but can be feasible when i is small, such as 2 or 3. 

Recall that most of the existing work on frequent itemset mining uses the 
Apriori property [I], ie., an i-itemset can be frequent only if all subsets of this 
itemset are frequent. One of the drawbacks of this approach has been the large 
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number of Zitemsets, especially when the number of distinct items is large, 
and 8 is small. 

Our idea is to use a hybrid approach to mine frequent itemsets from a trans- 
action stream. We use the idea from Karp et al. to determine the potential 
frequent 2-itemsets. Then, we use the set of potential frequent 2-itemsets and 
the Apriori property to generate the potential i-itemsets, for i > 2. This ap- 
proach finds a set of potential frequent itemsets, which is guaranteed to contain 
all the true frequent itemsets, in a single pass of the stream. 

Also, if a second pass of the data stream is allowed, we can eliminate all 
the false frequent itemsets from our result set. The second pass is very easy to 
implement, and in the rest of our discussion, we will only focus on the first pass 
of our algorithm. 
Bounding False Positives: In order to have a accuracy bound, we propose the 
following criteria for the reported potential frequent itemsets after the first pass. 
Besides reporting all items or itemsets that occur with frequency more than N8, 
we want to report only the items or itemsets which appear with frequency at 
least N8(1 - E), where 0 < & < 1. This criteria is similar to the one proposed 
by Manku and Motwani [28]. 

We can achieve this goal by modifying the algorithm as shown in Figure 4.2. 
In thefirst step, we invoke the algorithm from Karp et al. with the frequency 
level BE. This will report a superset of items occurring with frequency more 
than NO€. We also record the number of eliminations, c, that occur in this step. 
Clearly, c is bounded by N ~ E .  In the second step, we remove all items whose 
reported frequency is less than N 8  - c 2 N8(1 - 6 ) .  

We have two claims about the above process: 1) it reports all items that occur 
with frequency more than N8, and 2) it only reports items which appear with 
frequency more than N8(1 - e ) .  The reason for this is as follows. Consider 
any element that appears with frequency N8. After the first step, it will be 
reported in the superset with a frequency greater than c, c < N ~ E .  Therefore, 
it will remain in the set after the second step also. Similarly, consider any item 
that appears with frequency less than N8(1 - E ) .  If this item is present in the 
superset reported after the first step, it will be removed during the second step 
since N 8  - c 2 N8(1- E). This idea can be used for frequent itemset mining 
also. 

In the next Section, we introduce our algorithm for mining frequent itemsets 
from streaming data based on the above two ideas. 

3.4 Algorithm Overview 
We now introduce our new algorithm in three steps. In Subsection 3.5, we 

describe an algorithm for mining frequent itemsets from a data stream, which 
assumes that each transaction has the same length. In Subsection 3.6, we extend 
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FindingFrequentItemsBounded(Sequence S, 0, E )  

global Set P;  
P t 0;  
c t 0; // Number of Elimination 
foreach ( s  E S )  

i f s  E P 
s.count + +; 

else 
P + { s ) u P ;  
sxount = 1;  
i f  \PI 2 [l/(Oc)l 

c + +; // Count Eliminations 
foreach (p E P) 

p.count - -; 
i f  p.count = 0 

P ' P - { P I ;  
foreach (p E P )  

if  p.count < (NO - c) 
p ' P - { P I ;  

output ( P )  ; 

Figure 4.2. Improving Algorithm with An Accuracy Bound 
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this algorithm to provide an accuracy bound on the potential frequent itemsets 
computed after one pass. In Subsection 3.7, we further extend the algorithm to 
deal with transactions of variable length. 

Before detailing each algorithm, we first introduce some terminology. We are 
mining a stream of transactions 2). Each transaction t in this stream comprises 
a set of items, and has the length Itl. Let the number of transactions in 2) be 
ID 1. Each algorithm takes the support level 8 as one parameter. An itemset in 
D to be considered frequent should occur more than 81 Dl times. 

To store and manipulate the candidate frequent itemsets during any stage of 
every algorithm, a lattice L is maintained. 

where, k is largest frequent itemset, and Li, 1 5 i 5 k comprises the 
potential frequent i-itemsets. Note that in mining frequent itemsets, the size 
of the set L1, which is bound by the number of distinct items in the dataset, is 
typically not very large. Therefore, in order to simplify our discussion, we will 
not consider L1 in the following algorithms, and assume we can find the exact 
frequent 1 -itemsets in the stream 2). Also, we will directly extend the idea from 
Karp et al. to find the potential frequent Zitemsets. 

As we stated in the previous section, we deal with all k-itemsets, k > 2, using 
the Apriori property. To facilitate this, we keep a buffer 7 in each algorithm 
to store the recently received transactions. The buffer will be accessed several 
times to find the potential frequent k-itemsets, k > 2. 

3.5 Mining Frequent Itemsets from Fixed Length 
Transactions 

The algorithm we present here mines frequent itemsets from a stream, under 
the assumption that each transaction has the same length It 1. The algorithm has 
two interleaved phases. TheJirst phase deals with 2-itemsets, and the second 
phase deals with k-itemsets, k > 2. The main algorithm and the associated 
subroutines are shown in Figures 4.3 and 4.4, respectively. Note that the two 
subroutines, Update and ReducFreq, are used by all the algorithms discussed 
in this section. 

The first phase extends the Karp et al.'s algorithm to deal with 2-itemsets. 
As we stated previously, the algorithm maintains a buffer 7 which stores the 
recently received transactions. Initially, the buffer is empty. When a new 
transaction t arrives, we put it in 7. Next, we call the Update routine to 
increment counts in L2. This routine simply updates the count of 2-itemsets 
that are already in L2. Other Zitemsets that are in the transaction t are inserted 
in the sets L2. 
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StreamMining-Fixed(Stream D, 0 ) 
global Lattice C;  
local B u f f e r  I ;  
local Transaction t; 
C + 0 ;  5 - 0 ;  
f + It1 * (It1 - l ) /% 
foreach (t E D) 

7 +- 7 u { t } ;  
Update(t, C ,  2); 
if lL2l > plol .f 

ReducFreq(C, 2); 
{* Deal with k - itemsets, Ic > 2 *) 
i t 2; 
while Ci # 0 

i + +; 
foreach (t E I )  

Update(t, L ,  i ) ;  
ReducFreq(L, i); 

7 +- 0; 
output (L) ; 

Figure 4.3. StreamMining-Fixed: Algorithm Assuming Fixed Length Transactions 

Update(Transaction t, Lattice C,  i ) 
for all i subsets s of t 

i f  s E Ci 
s.count + +; 

else i f  i 5 2 
Ci .insert (s)  ; 

else i f  all i - 1 subsets o f  s E Li-l 
Li .insert ( s )  ; 

ReducFreq(Lattice L, i )  
foreach i itemsets s E Ci 

s.count - -; 
i f  s.count = 0 

Li.delete(s); 

Figure 4.4. Subroutines Description 
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When the size of L2 is beyond the threshold, [1/8] f ,  where f is the number 
of 2-itemsets per transaction, we call the procedure ReducFreq to reduce the 
count of each 2-itemsets in L2, and the itemsets whose count becomes zero are 
deleted. Invoking ReducFreq on L2 triggers the second phase. 

The second phase of the algorithm deals with all k-itemsets, k > 2. This 
process is carried out level-wise, i.e, it proceeds from 3-itemsets to the largest 
potential frequent itemsets. For each transaction in the buffer I, we enumerate 
all i-subsets. For any i-subset that is already in L, the process will be the same 
as for a 2-itemset, i.e, we will simply increment the count. However, an i-subset 
that is not in L will be inserted in L only if all of its i - 1 subsets are in L as 
well. Thus, we use the Apriori property. 

After updating i-itemsets in L, we will invoke the ReducFreq routine. Thus, 
the itemsets whose count is only 1 will be deleted from the lattice. This pro- 
cedure will continue until there are no frequent k-itemsets in L. At the end of 
this, we clear the buffer, and start processing new transactions in the stream. 
This will restart the first phase of our algorithm to deal with %-itemsets. 

We next discuss the correctness and the memory costs of our algorithm. Let 
L! be the set of frequent i-itemsets with support level 8 in 27, and Li be the set 
of potential frequent i-itemsets provided by this algorithm. 

THEOREM 1 In using the algorithm StreamMining-Fixed on a set of transac- 
tions with a f i e d  length, for any k 2 2, L: c Lk. 

LEMMA 4.1 In using the algorithm StreamMining-Fixed on a set of transac- 
tions with afrred length, the sire of L2 is bounded by ([1/8] + l)(F1). 

The proofs for the Theorem 1 and the Lemma 4.1 are available in a technical 
report [23]. Theorem 1 implies that any frequent k-itemset is guaranteed to be 
in the output of our algorithm. Lemma 4.1 provides an estimate of the memory 
costs for L2. 

3.6 Providing an Accuracy Bound 
We now extend the algorithm from the previous subsection to provide a 

bound on the accuracy of the reported results. As described in Subsection 3.3, 
the bound is described by an user-defined parameter, E ,  where 0 < E 5 1. Based 
on this parameter, the algorithm ensures that the frequent itemsets reported do 
occur more than (1 - ~)8127I times in the dataset. 

The basic idea for achieving such a bound on frequent items computation was 
illustrated in Figure 4.2. We can extend this idea to finding frequent itemsets. 
Our new algorithm is described in Figure 4.5. Note that we still assume that 
each transaction has the same length. 

This algorithm provides the new bound on accuracy in two steps. In thejrst 
step, we invoke the algorithm in Figure 4.3 with the frequency level 8 ~ .  This 
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StreamMining-Bounded(Stream 27, 0, e ) 
global Lattice L ;  
local B u f f e r  7; 
local Transaction t; 
L - 0 ;  7 - 0 ;  
f ltl * (ltl - 111% 
c +- 0; // Number of ReducFreq Invocations 
foreach (t E D) 

7 +- 7 u { t ) ;  
Update(t, L ,  1); 
Update(t, L ,  2); 
if (C2 1 2 r1/@~1 -f 

ReducFreq(L, 2); 
c + + ;  
2 - 2; 
while Ci # 0 

i++; 
foreach (t E 7) 

Update(t, L ,  i);  
ReducFreq(L, i ) ;  

I+--@; 
foreach s E L 

if s.count 5 @/Dl - c 
Li.delete(s); 

Output ( L )  ; 

Figure 4.5. StreamMining-Bounded: Algorithm with a Bound on Accuracy 
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will report a superset of itemsets occurring with frequency more than NO€. We 
record the number of invocations of ReducFreq, c, in the first step. Clearly, c 
is bounded by NO€. In the second step, we remove all items whose reported 
frequency is less than NO - c > N 8 ( 1 -  6 ) .  This is achieved by the last foreach 
loop. 

The new algorithm has the following property: 1) if an itemset has frequency 
more than 8, it will be reported. 2) if an itemset is reported as a potential frequent 
itemset, it must have a frequency more than 8(1-  6 ) .  Theorem 2 formally states 
this property, and its proof is available in a technical report [23]. 

THEOREM 2 In using the algorithm StreamMining-Bounded on a set of trans- 
( i -~ )e  

actions with a fixed length, for any k 2 2, LfE C Ck C Lk . 
Note that the number of invocations ofReducFreq, c, is usually much smaller 

than N ~ E  after processing a data stream. Therefore, an interesting property of 
this approach is that it produces a very small number of false frequent item- 
sets, even with relatively large E .  The experiments in [22] also support this 
observation. 

The following lemma claims that the memory cost of Cz is increased by a 
factor proportional to 116. 

LEMMA 4.2 In using the algorithm StreamMining-Bounded on a set of trans- 
actions with afrxed length, the size of L2 is bounded by (rl/@rl + I)(!'). 

3.7 Dealing with Variable Length Transactions 
In this subsection, we present our final algorithm, which improves upon 

the algorithm from the previous subsection by dealing with variable length 
transactions. The algorithm is referred to as StreamMining and is illustrated in 
Figure 4.6. 

When eachtransaction has a different length, the number of 2-itemsets in each 
transaction also becomes different. Therefore, we cannot simply maintain f ,  the 
number of 2-itemsets per transaction, as a constant. Instead, we maintain f as 
a weighted average of the number of 2-itemsets that each transaction processed 
so far. This weighted average is computed by giving higher weightage to the 
recent transactions. The details are shown in the pseudo-code for the routine 
TwoItemsetPerTransaction. 

To motivate the need for taking such a weighted average, consider the natural 
alternative, which will be maintaining f as the average number of 2-itemsets 
that each transaction seen so far has. This will not work correctly. For example, 
suppose there are 3 transactions, which have the length 2,2, and 3, respectively, 
and 0 is 0.5. The first two transactions will have a total of two 2-itemsets, and 
the third one has 6 2-itemsets. We will preform an elimination when the number 
of different 2-itemsets is larger than or equal to (118) x f .  When the first two 
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StreamMining(Stream V ,  6, E ) 
global Lattice L ;  
local B u f f e r  7; 
local Transaction t ;  
L + 0 ;  7 + 0 ;  
f t 0; // Average 2 - itemset per transaction 
c + 0; 
foreach (t E V )  

7 + 7 u  { t ) ;  
Update(t, L ,  1); 
Update(t, L ,  2); 
f t TwoItemsetPerTransaction(t); 
if IGl 2 [ l l o ~ l  .f 

ReducFreq(L, 2); 
c++; 
i t 2; 
while Li # 0 

i++; 
foreach (t E 7) 

Update(t, C, i);  
ReducFreq(C, i); 

7 + 0 ;  
foreach s E L 

if sxount 5 0101 - c 
Li.delete(s); 

Output ( L )  ; 

TwoItemsetPerTransaction(Transaction t) 
global X; // Number of 2 Itemset 
global N ;  // Number o f  Transactions 
local f ;  
N + +; 

Figure 4.6. StreamMining: Final Algorithm 
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transactions arrive, an elimination will happen (assuming that the two 2-itemsets 
are different). When the third one arrives, the average number of Zitemsets is 
less than 3, so another elimination will be performed. Unfortunately, a frequent 
2-itemset that appears in both transactions 1 and 3 will be deleted in this way. 

In our approach, the number of invocations of ReducFreq, c, is less than 
ID 1 (BE), where ID1 is the number of transactions processed so far in the al- 
gorithm. Lemma 4.3 formalizes this, and its proof is available in a technical 
report [23]. 

LEMMA 4.3 c < 1 V 1 (Be) is an invariant in the algorithm StreamMining. 

Note that by using the Lemma 4.3, we can deduce that the property of the 
Theorem 2 still holds for mining a stream of transaction with variable transaction 
lengths. Formally, 

THEOREM 3 In using the algorithm StreamMiningon a stream of transactions 
( I - E ) ~  with variable lengths, for any k 2 2, Lfl. c Lk c Lk . 

An interesting property of our method is that in the situation where each 
transaction has the same length, our final algorithm, StreamMining will work 
in the same fashion as the algorithm previously shown in Figure 4.5. 

Note, however, that unlike the case with fixed length transactions, the size of 
L2 cannot be bound by a closed formula. Also, in all the algorithms discussed 
in this section, the size of sets Lk, Ic > 2 also cannot be bound in any way. Our 
algorithms use the Apriori property to reduce their sizes. 

Finally, we point out that the new algorithm is very memory efficient. For 
example, Lossy Counting utilizes an out-of-core (disk-resident) data structure 
to maintain the potentially frequent itemsets. In comparison, we do not need any 
such structure. On the T10.14.NlOK dataset used in their paper, we see that with 
1 million transactions and a support level of I%, Lossy Counting requires an 
out-of-core data-structures on top of even a 44 MB buffer. For datasets ranging 
from 4 million to 20 million transactions, our algorithm only requires 2.5 MI3 
main memory based summary. In addition, we believe that there are a number 
of advantages of an algorithm that does not require an out-of-core summary 
structure. Mining on streaming data may often be performed in mobile, hand- 
held, or sensor devices, where processors do not have attached disks. It is also 
well known that additional disk activity increases the power requirements, and 
battery life is an important issue in mobile, hand-held, or sensor devices. Also, 
while their algorithm is shown to be currently computation-bound, the disparity 
between processor speeds and disk speeds continues to grow rapidly. Thus, we 
can expect a clear advantage from an algorithm that does not require frequent 
disk accesses. 
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4. Work on Other Related Problems 
In this section, we look at the work on problems that are closely related with 

the frequent pattern-mining problem defined in Section 2. 
Scalable Frequent Pattern Mining Algorithms: A lot of research effort has 
been dedicated to make frequent pattern mining scalable on very large disk- 
resident datasets. These techniques usually focus on reducing the passes of the 
datasets. They typically try to find a superset or an approximate set of frequent 
itemsets in the first pass, and then find all the frequent itemsets as well as the 
counts in another one or few passes [29], [31], [19]. However, the first pass 
algorithms either do not have appropriate guarantees on the accuracy of frequent 
itemsets [3 11, or produces a large number of false positives [29, 191. Therefore, 
they are not very suitable for the streaming environment. 
Mining Frequent Items in Data Streams: Given a potentially infinite se- 
quence of items, this work tries to identify the items which have higher fiequen- 
cies than a given support level. Clearly, this problem can be viewed a simple 
version of fiequent pattern mining over the entire data stream, and indeed most 
of the mining algorithms discussed in this chapter are derived from these work. 
Algorithms in mining frequent items in data streams use different techniques, 
such as random sketches [8, 131 or sampling [31, 281, and achieve the differ- 
ent space requirement. They also have either false-positive or false-negative 
properties. Interested user can look at [34] for more detailed comparison. 
Finding Top-k Items in Distributed Data Streams: Assuming we have sev- 
eral distributed data streams and each item might carry different weights at each 
of its arrival, the problem is to find the k items which has the highest global 
weight. Olston and his colleagues have studied this problem, which they call 
top-k monitoring queries [5,27]. Clearly, in order to maintain the global top- 
k items in a distributed streaming environment, frequent communication and 
synchronization is needed. Therefore, the focus of their research is on reducing 
the communication cost. They have proposed a method to achieve such goal 
by constraining each individual data streams with an arithmetic condition. The 
communication is only necessary when the arithmetic condition is violated. 
Finding Heavy Hitters in Data Streams: Cormode et. al. studied the problem 
to efficiently identify heavy hitters in data streams [14]. It can be looked as 
an interesting variation of frequent-items mining problem. In this problem, 
there is a hierarchy among different items. Given a frequency level 4, the 
count of an item i in the hierarchy include all the items which are descendants 
of i, and whose counts are less than 4. An item whose counts exceeds 4 is 
called Hierarchy Heavy Hitter (HHH), and we want to find all HHHs in a data 
stream. They have presented both deterministic and randomized algorithms to 
find HHHs. 
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Frequent Temporal Patterns over Data Streams: Considering a sliding win- 
dow moves along a data stream, we monitor the counts for an itemset at each 
time point. Clearly, this sequence of counting information for a given itemset 
can be formulated as a time series. Inspired by such observation, Teng et. al. 
have developed an algorithm to find frequent patterns in sliding window model 
and collect sufficient statistics for a regression-based analysis of such time se- 
ries [30]. They have showed such a framework is applicable in answering 
itemsets queries with flexible time-intervals, trend identification, and change 
detection. 
Mining Semi-structured Data Streams: Asai et. al. developed an efficient 
algorithm for mining frequent rooted ordered trees from a semi-structured data 
stream [3]. In this problem setting, they model a semi-structured dataset as a 
tree with infinite width but finite height. Traversing the tree with a left-most 
order generates the data stream. In other words, each item in the data stream is 
a node in the tree, and its arriving order is decided by the left-most traversing of 
the tree. They utilize the method in Carma [19] for candidate subtree generation. 

5. Conclusions and Future Directions 
In this chapter, we gave an overview of the state-of-art in algorithms for 

frequent pattern mining over data streams. We also introduced a new approach 
for frequent itemset mining. We have developed a new one-pass algorithm 
for streaming environment, which has deterministic bounds on the accuracy. 
Particularly, it does not require any out-of-core memory structure and is very 
memory efficient in practice. 

Though the existing one-pass mining algorithms have been shown to be very 
accurate and faster than traditional multi-pass algorithms, the experimental 
results show that they are still computationally expensive, meaning that if the 
data arrives too rapidly, the mining algorithms will not able to handle the data. 
Unfortunately, this can be the case for some high-velocity streams, such as 
network flow data. Therefore, new techniques are needed to increase the speed 
of stream mining tasks. We conclude this chapter with a list of future research 
problems to address this challenge. 
mining maximal and other condensed frequent itemsets in data streams: 
Maximal frequent itemsets (MFI), and other condensed frequent itemsets, such 
as the 6 - cover proposed in [32], provide good compression of the frequent 
itemsets. Mining them are very likely to reduce the mining costs in terms of 
both computation and memory over data streams. However, mining such kinds 
of compressed pattern set poses new challenges. The existing techniques will 
logically partition the data stream into segments, and mine potentially frequent 
itemsets each segment. In many compressed pattern sets, for instance, MFI, 
if we just mine MFI for each segment, it will be very hard to find the global 
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MFI. This is because the MFI can be different in each segment, and when we 
combine them together, we need the counts for the itemsets which are frequent 
but not maximal. However, estimating the counts for these itemsets can be very 
difficult. The similar problem occurs for other condensed frequent itemsets 
mining. Clearly, new techniques are necessary to mine condensed frequent 
itemsets in data steams. 
Online Sampling for Frequent Pattern Mining: The current approaches in- 
volve high-computational cost for mining the data streams. One of the main 
reasons is that all of them try to maintain and deliver the potentially frequent 
patterns at any time. If the data stream arrives very rapidly, this could be unre- 
alistic. Therefore, one possible approach is to maintain a sample set which best 
represents the data stream and provide good estimation of the frequent itemsets. 

Compared with existing sampling techniques [3 1, 9, 61 on disk-resident 
datasets for frequent itemsets mining, sampling data streams brings some new 
issues. For example, the underlying distribution of the data stream can change 
from time to time. Therefore, sampling needs to adapt to the data stream. 
However, it will be quite difficult to monitor such changes if we do not mine 
the set of frequent itemsets directly. In addition, the space requirement of the 
sample set can be an issue as well. As pointed by Manku and Motwani [28], 
methods similar to concise sampling [16] might be helpful to reduce the space 
and achieve better mining results. 
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Abstract 
An important problem in the field of data stream analysis is change detection 

and monitoring. In many cases, the data stream can show changes over time 
which can be used for understanding the nature of several applications. We 
discuss the concept of velocity density estimation, a technique used to understand, 
visualize and determine trends in the evolution of fast data streams. We show 
how to use velocity density estimation in order to create both temporal velocity 
proJiles and spatial velocity profiles at periodic instants in time. These profiles 
are then used in order to predict three kinds of data evolution. Methods are 
proposed to visualize the changing data trends in a single online scan of the data 
stream, and a computational requirement which is linear in the number of data 
points. In addition, batch processing techniques are proposed in order to identify 
combinations of dimensions which show the greatest amount of global evolution. 
We also discuss the problem of change detection in the context of graph data, 
and illustrate that it may often be useful to determine communities of evolution 
in graph environments. 

The presence of evolution in data streams may also change the underlying data 
to the extent that the underlying data mining models may need to be modified 
to account for the change in data distribution. We discuss a number of methods 
for micro-clustering which are used to study the effect of evolution on problems 
such as clustering and classification. 



86 DATA STREAMS: MODELS AND ALGORITHMS 

1. Introduction 
In recent years, advances in hardware technology have resulted in automated 

storage of data from a variety of processes. This results in storage which creates 
millions of records on a daily basis. Often, the data may show important changes 
in the trends over time because of changes in the underlying phenomena. This 
process is referred to as data evolution. By understanding the nature of such 
changes, a user may be able to glean valuable insights into emerging trends in 
the underlying transactional or spatial activity. 

The problem of data evolution is interesting from two perspectives: 

For a given data stream, we would like to fmd the significant changes 
which have occurred in the data stream. This includes methods of vi- 
sualizing the changes in the data and finding the significant regions of 
data dissolution, coagulation, and shift. The aim of this approach is to 
provide a direct understanding of the underlying changes in the stream. 
Methods such as those discussed in [3,11,15,18] fall into this category. 
Such methods may be useful in a number of applications such as network 
traffic monitoring [21]. In [3], the velocity density estimation method 
has been proposed which can be used in order to visualize different kinds 
of trends in the data stream. In [I 11, the difference between two distribu- 
tions is characterized using the =-distance between two distributions. 
Other methods for trend and change detection in massive data sets may 
be found in [15]. Methods have also been proposed recently for change 
detection in graph data streams 121. 

w The second class of problems relevant to data evolution is that ofupdating 
data mining models when a change has occurred. There is a considerable 
amount of work in the literature with a focus on incremental maintenance 
of models in the context of evolving data [lo, 12,241. However, in the 
context of fast data streams, it is more important to use the evolution of 
the data stream in order to measure the nature of the change. Recent 
work [13, 141 has discussed a general framework for quantifying the 
changes in evolving data characteristics in the context of several data 
mining problems and algorithms. The focus of our paper is different 
from and orthogonal to the work in [13, 141. Specifically, the work in 
[13,14] is focussed on the effects of evolution on data mining models and 
algorithms. While these results show some interesting results in terms of 
generalizing existing data mining algorithms, our view is that data streams 
have special mining requirements which cannot be satisfied by using 
existing data mining models and algorithms. Rather, it is necessary to 
tailor the algorithms appropriately to each task. The algorithms discussed 
in [5,7] discuss methods for clustering and classification in the presence 
of evolution of data streams. 
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This chapter will discuss the issue of data stream change in both these con- 
texts. Specifically, we will discuss the following aspects: 

rn We discuss methods for quantifying the change at a given point of the 
data stream. This is done using the concept of velocity density estimation 
PI .  

We show how to use the velocity density in order to construct visual spatial 
and temporal profiles of the changes in the underlying data stream. This 
profiles provide a visual overview to the user about the changes in the 
underlying data stream. 

rn We discuss methods for utilizing the velocity density in order to character- 
ize the changes in the underlying data stream. These changes correspond 
to regions of dissolution, coagulation, and sift in the data stream. 

We show how to use the velocity density to determine the overall level of 
change in the data stream. This overall level of change is defined in terms 
of the evolution coefficient of the data stream. The evolution coefficient 
can be used to find interesting combinations of dimensions with a high 
level of global evolution. This can be useful in many applications in 
which we wish to find subsets of dimensions which show a global level 
of change. 

We discuss how clustering methods can be used to analyze the change in 
different kinds of data mining applications. We discuss the problem of 
community evolution in interaction graphs and show how the methods 
for analyzing interaction graphs can be quite similar to other kinds of 
multi-dimensional data. 

We discuss the issue of effective application of data mining algorithms 
such as clustering and classification in the presence of change in data 
streams. We discuss general desiderata for designing change sensitive 
data mining algorithms for streams. 

A closely related problem is that of mining spatio-temporal or mobile data 
[19, 20, 221, for which it is useful to have the ability to diagnose aggregate 
changes in spatial characteristics over time. The results in this paper can be 
easily generalized to these cases. In such cases, the change trends may also be 
useful from the perspective of providing physical interpretability to the under- 
lying change patterns. 

This chapter is organized as follows. In the next section, we will introduce 
the velocity density method and show how it can be used to provide different 
kinds of visual profiles. These visual representations may consist of spatial 
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or temporal velocity profiles. The velocity density method also provides mea- 
sures which are helpful in measuring evolution in the high dimensional case. 
In section 3 we will discuss how the process of evolution affects data min- 
ing algorithms. We will specifically consider the problems of clustering and 
classification. We will provide general guidelines as to how evolution can be 
leveraged in order to improve the quality of the results. In section 4, we discuss 
the conclusions and summary. 

2. The Velocity Density Method 
The idea in velocity density is to construct a density based velocity profile of 

the data. This is analogous to the concept of kernel density estimation in static 
data sets. In kernel density estimation [23], we provide a continuous estimate 
of the density of the data at a given point. The value of the density at a given 
point is estimated as the sum of the smoothed values of kernel functions Ki ( a )  

associated with each point in the data set. Each kernel function is associated 
with a kernel width h which determines the level of smoothing created by the 
function. The kernel estimation T(x) based on n data points and kernel function 
Ki(-)  is defined as follows: 

Thus, each discrete point Xi in the data set is replaced by a continuous func- 
tion Ki(.) which peaks at Xi and has a variance which is determined by the 
smoothing parameter h. An example of such a distribution would be a gaussian 
kernel with width h. 

The estimation error is defined by the kernel width h which is chosen in a 
data driven manner. It has been shown [23] that for most smooth functions 
Ki(-) ,  when the number of data points goes to infinity, the estimator f (x) 
asymptotically converges to the true density function f (x), provided that the 
width h is chosen appropriately. For the d-dimensional case, the kernel function 
is chosen to be the product of d identical kernels Ki(.), each with its own 
smoothing parameter hi. 

In order to compute the velocity density, we use a temporal window ht 
in order to perform the calculations. Intuitively, the temporal window ht is 
associated with the time horizon over which the rate of change is measured. 
Thus, if ht is chosen to be large, then the velocity density estimation technique 
provides long term trends, whereas if ht is chosen to be small then the trends 
are relatively short term. This provides the user flexibility in analyzing the 
changes in the data over different kinds of time horizons. In addition, we have 
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F i g u ~  5.1. The Forward Time Slice Density Estimate 

Figure 5.2. The Reverse Time Slice Density Estimate 

a spatial smoothing vector h, whose function is quite similar to the standard 
spatial smoothing vector which is used in kernel density estimation. 

Let t be the current instant and S be the set of data points which have arrived 
in the time window (t - ht, t).  We intend to estimate the rate of increase in 
density at spatial location X and time t by using two sets of estimates: the 
forward time slice density estimate and the reverse time slice density estimate. 
Intuitively, the forward time slice estimate measures the density function for 
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Figure 5.3. The Temporal Velocity Profile 

Figure 5.4. The Spatial Velocity Profile 
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all spatial locations at a given time t based on the set of data points which have 
arrived in the past time window (t - ht, t ) .  Similarly, the reverse time slice 
estimate measures the density function at a given time t based on the set of data 
points which will arrive in the future time window (t, t + ht). Let us assume 
that the ith data point in S is denoted by (X i ,  ti), where i varies from 1 to I St. 
Then, the forward time slice estimate F(h,,ht) ( X ,  t )  of the set S at the spatial 
location X and time t is given by: 

Here K(h,,ht)(-, -) is a spatio-temporal kernel smoothing function, h, is the 
spatial kernel vector, and ht is temporal kernel width. The kernel function 
K(h,,ht) ( X - X i ,  t-ti) is a smooth distribution which decreases with increasing 
value o f t  - ti. The value of Cf is a suitably chosen normalization constant, so 
that the entire density over the spatial plane is one unit. This is done, because 
our purpose of calculating the densities at the time slices is to compute the 
relative variations in the density over the different spatial locations. Thus, Cf 
is chosen such that we have: 

The reverse time slice density estimate is also calculated in a somewhat 
different way to the forward time slice density estimate. We assume that the set 
of points which have arrived in the time interval (t,  t + ht) is given by U. As 
before, the value of C, is chosen as a normalization constant. Correspondingly, 
we define the value of the reverse time slice density estimate R(h,,ht) ( X ,  t )  as 
follows: 

Note that in this case, we are using ti - t in the argument instead o f t  - ti. 
Thus, the reverse time-slice density in the interval (t,  t + ht)  would be exactly 
the same as the forward time slice density if we assumed that time was reversed 
and the data stream arrived in reverse order, starting at t + ht and ending at t. 
Examples of the forward and reverse density profiles are illustrated in Figures 
5.1 and 5.2 respectively. 

For a given spatial location X and time T ,  let us examine the nature of the 
functions F(h,,ht) ( X ,  T )  and R(h,,ht) ( X ,  T - ht). Note that both functions 
are almost exactly the same, and use the same data points from the interval 
( T  - ht, T ) ,  except that one has been calculated assuming time runs forward, 
whereas the other has been calculated assuming that the time runs in reverse. 
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Furthermore, the volumes under each of these curves, when measured over all 
spatial locations X is equal to one unit because of the normalization. Corre- 
spondingly, the density profiles at a given spatial location X would be different 
between the two depending upon how the relative trends have changed in the 
interval (T - ht, T). We define the velocity density y h S , h t )  (X, T )  at spatial 
location X and time T as follows: 

We note that a positive value of the velocity density corresponds to a increase 
in the data density of a given point. A negative value of the velocity density 
corresponds to a reduction in the data density a given point. In general, it has 
been shown in [3] that when the spatio-temporal kernel function is defined as 
below, then the velocity density is directly proportional to a rate of change of 
the data density at a given point. 

This kernel function is only defined for values o f t  in the range (0, ht). The 
gaussian spatial kernel function KL, (.) was used because of its well known 
effectiveness 1231. Specifically, Kh8 (.) is the product of d identical gaussian 
kernel functions, and h, = (hi,  . . . hf), where h: is the smoothing parameter 
for dimension i. Furthermore, for the special case of static snapshots, it is 
possible to show [3] that he velocity density is proportional to the difference in 
the spatial kernel densities of the two sets. Thus, the velocity density approach 
retains its intuitive appeal under a variety of special circumstances. 

In general, we utilize a grid partitioning of the data in order to perform the 
velocity density calculation. We pick a total of /3 coordinates along each dimen- 
sion. For a 2-dimensional system, this corresponds to P2 spatial coordinates. 
The temporal velocity profile can be calculated by a simple O(p2) additive 
operations per data point. For each coordinate Xg in the grid, we maintain two 
sets of counters (corresponding to forward and reverse density counters) which 
are updated as each point in the data stream is received. When a data point Xi 
is received at time ti, then we add the value K(hS,ht)  (Xg - Xi, t - ti) to the 
forward density counter, and the value K(hs ,ht )  (Xg - Xi, ti - (t - ht)) to the 
reverse density counter for Xg. At the end of time t, the values computed for 
each coordinate at the grid need to be normalized. The process of normalization 
is the same for either the forward or the reverse density profiles. In each case, 
we sum up the total value in all the P2 counters, and divide each counter by this 
total. Thus, for the normalized coordinates the sum of the values over all the P2 
coordinates will be equal to 1. Then the reverse density counters are subtracted 
from the forward counters in order to compete the computation. 



A Survey of Change Diagnosis Algorithms in Evolving Data Streams 93 

Successive sets of temporal profiles are generated at user-defined time- 
intervals of of ht. In order to ensure online computation, the smoothing param- 
eter vector h, for the time-interval (T - ht , T)  must be available at time T - ht, 
as soon as the first data point of that interval is scheduled to arrive. Therefore, 
we need a way of estimating this vector using the data from past intervals. In 
order to generate the velocity density for the interval (T - ht, T), the spatial 
kernel smoothing vector h, is determined using the Silverman's approximation 
rule1 [23] for gaussian kernels on the set of data points which arrived in the 
interval (T - 2ht, T - ht). 

2.1 Spatial Velocity Profiles 
Even better insight can be obtained by examining the nature of the spatial 

velocity profiles, which provide an insight into how the data is shifting. For 
each spatial point, we would like to compute the directions of movements of 
the data at a given instant. The motivation in developing a spatial velocity 
profile is to give a user a spatial overview of the re-organizations in relative 
data density at different points. In order to do so, we define an €-perturbation 
along the ith dimension by = E q ,  where is the unit vector along the 
ith dimension. For a given spatial location X ,  we first compute the velocity 
gradient along each of the i dimensions. We denote the velocity gradient along 
the ith dimension by Avi(X, t )  for spatial location X and time t .  This value is 
computed by subtracting the density at spatial location X fiom the density at 
X + 4 (eperturbation along the ith dimension), and dividing the result by E. 

The smaller the value of E, the better the approximation. Therefore, we have: 

The value of Avi(X, t )  is negative when the velocity density decreases with 
increasing value of the ith coordinate of spatial location X. The gradient 
Av(X, t) is given by (Avl(X, t) . . . Avd(X, t)). This vector gives the spatial 
gradient at a given grid point both in terms of direction and magnitude. The 
spatial velocity profile is illustrated by creating a spatial plot which illustrates 
the directions of the data shifts at different grid points by directed markers which 
mirror these gradients both in terms of directions and magnitude. An example 
of a spatial velocity profile is illustrated in Figure 5.4. If desired, the spatial 
profile can be generated continuously for a fast data stream. This continuous 
generation of the profile creates spatio-temporal animations which provide a 
continuous idea of the trend changes in the underlying data. Such animations 
can also provide real time diagnosis ability for a variety of applications. 

An additional usefbl ability is to be able to concisely diagnose specific trends 
in given spatial locations. For example, a user may wish to know particular 
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spatial locations in the data at which the data is being reduced, those at which 
the data is increasing, and those from where the data is shifting to other locations: 

DEFINITION 5.1 A data coagulation for timeslice t  and user defined threshold 
min-coag is defined to be a connected region R in the data space, so that for 
eachpoint X E R, we have yh,,ht) (X, t )  > min-coag > 0. 

Thus, a data coagulation is a connected region in the data which has velocity 
density larger than a user-defined noise threshold of min-coag. In terms of 
the temporal velocity profile, these are the connected regions in the data with 
elevations larger than min-coag. Note that there may be multiple such elevated 
regions in the data, each of which may be disconnected from one another. Each 
such region is a separate area of data coagulation, since they cannot be connected 
by a continuous path above the noise threshold. For each such elevated region, 
we would also have a local peak, which represents the highest density in that 
locality. 

DEFINITION 5.2 The epicenter of a data coagulation R at time slice t  is 
defined to be a spatial location X* such that X* E R and for any X E R, we 
have ?h,,ht) (X, t )  5 y h , , h t )  (X*, t). 

Similarly regions of data dissolution and corresponding epicenters can be de- 
termined. 

DEFINITION 5.3 A data dissolution for time slice t and user defined threshold 
min-dissol is defined to be a connected region R in the data space, so that for 
eachpoint X E R, we have ?h,,ht) (X, t )  < -min-dissol < 0. 

We define the epicenter of a data dissolution as follows: 

DEFINITION 5.4 The epicenter of a data dissolution Rat  timeslice t  is defined 
to be a spatial location X* such that X* E R and for any X E R, we have 
?h,,ht) (X, t )  2 Y h , , h t )  (X*, t). 

A region of data dissolution and its epicenter is calculated in an exactly analo- 
gous way to the epicenter of a data coagulation. It now remains to discuss how 
significant shifts in the data can be detected. Many of the epicenters of coagu- 
lation and dissolution are connected in a way which results in a funneling of the 
data from the epicenters of dissolution to the epicenters of coagulation. When 
this happens, it is clear that the two phenomena of dissolution and coagulation 
are connected to one another. We refer to such a phenomenon as a global data 
shift. The detection of such shifts can be useful in many problems involving 
mobile objects. How to find whether a pair of epicenters are connected in this 
way? 

In order to detect such a phenomenon we use the intuition derived from the 
use of the spatial velocity profiles. Let us consider a directed line drawn from 
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an epicenter to data dissolution to an epicenter of data coagulation. In order 
for this directed line to be indicative of a global data shift, the spatial velocity 
profile should be such that the directions of a localized shifts along each of the 
points in this directed line should be in roughly in the same direction as the 
line itself. If at any point on this directed line, the direction of the localized 
shift is in an opposite direction, then it is clear that the these two epicenters are 
disconnected from one another. In order to facilitate further discussion, we will 
refer to the line connecting two epicenters as apotential shift line. 

Recall that the spatial velocity profiles provide an idea of the spatial move- 
ments of the data over time. In order to calculate the nature of the data shift, we 
would need to calculate the projection of the spatial velocity profiles along this 
potential shift line. In order to do so without scanning the data again, we use 
the grid points which are closest to this shift line in order to obtain an approxi- 
mation of the shift velocities at various points along this line. The first step is to 
find all the elementary rectangles which are intersected by the shift line. Once 
these rectangles have been found we determine the grid points corresponding 
to the corners of these rectangles. These are the grid points at which the spatial 
velocity profiles are examined. 

Let the set of n grid points thus discovered be denoted by Yl . . . Yn. Then 
the corresponding spatial velocities at these grid points at time slice t  are 
Av(Yl, t )  . . . Av(Yn, t ) .  Let be the unit vector in the direction of the shift 
line. We assume that this vector is directed from the region of dissolution to 
the area of coagulation. Then the projections of the spatial velocities in the - - 
direction of the shift line are given by - Av (Yl , t )  . . . LC: - Av (Yn, t ) .  We shall 
refer to these values as pl . . . pn respectively. For a shift line to expose an actual 
movement of the data, the values of pl . . . pn must all be substantially positive. 
In order to quantify this notion, we introduce a user-defined parameter called 
min-vel. A potential shift line is said to be a valid shift when each of values 
pl . . . pn is larger than min-vel. 

Thus, in order to determine the all the possible data shifts, we first find all co- 
agulation and dissolution epicenters for user-defined parameters min-coag and 
min-dissol respectively. Then we find all the potential shift lines by connecting 
each dissolution epicenter to a coagulation epicenter. For each such shift line, 
we find the grid points which are closest to it using the criteria discussed above. 
Finally, for each of these grid points, we determine the projection of the corre- 
sponding shift velocities along this line and check whether each of them is at 
least min-vel. If so, then this direction is reported as a valid shift line. 

2.2 Evolution Computations in High Dimensional Case 
In this section, we will discuss how to determine interesting combinations 

of dimensions with a high level of global evolution. In order to do so, we need 
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to have a measure for the overall level of evolution in a given combination of 
dimensions. By integrating the value of the velocity density over the entire 
spatial area, we can obtain the total rate of change over the entire spatial area. 
In other words, if E(hs,ht)  (t) be the total evolution in the period (t - ht, t), then 
we have: 

E(h,,kt) (t) = ht Sail x Ivhs ,h t )  (X) t )  16X 
Intuitively, the evolution coefficient measures the total volume of the evo- 

lution in the time horizon (t - ht, t). It is possible to calculate the evolution 
coefficients of particular projections of the data by using only the corresponding 
sets of dimensions in the density calculations. In [3] it has been shown how 
the computation of the evolution coefficient can be combined with an a-priori 
like rollup approach in order to find the set of minimal evolvingprojections. In 
practice, the number of minimal evolving projections is relatively small, and 
therefore large part of the search space can be pruned. This results in an effective 
algorithm for finding projections of the data which show a significant amount 
of evolution. In many applications, the individual attributes may not evolve 
a lot, but the projections may evolve considerably because of the changes in 
relationships among the underlying attributes. This can be useful in a number 
of applications such as target marketing or multi-dimensional trend analysis. 

2.3 On the use of clustering for characterizing stream 
evolution 

We note that methods such as clustering can be used to characterize the stream 
evolution. For this purpose, we utilize the micro-clustering methodology which 
is discussed2 in [5]. We note that clustering is a natural choice to study broad 
changes in trends, since it summarizes the behavior of the data. 

In this technique, micro-clusters are utilized in order to determine sudden 
changes in the data stream. Specifically, new trends in the data show up as new 
micro-clusters, whereas declining trends correspond to disappearing micro- 
clusters. In [5], we have illustrated the effectiveness of this kind of technique 
on an intrusion detection application. In general, the micro-clustering method 
is useful for change detection in a number of unsupervised applications where 
training data is not readily available, and anomalies can only be detected as 
sudden changes in the underlying trends. In the same paper, we have also 
shown some examples of how the method may be used for intrusion detection. 

Such an approach has also been extended to the case of graph and structural 
data sets. In [2], we use a clustering technique in order to determine comrnu- 
nity evolution in graph data streams. Such a clustering technique is useful in 
many cases in which we need to determine changes in interaction over different 
entities. In such cases, the entities may represent nodes of a graph and the 
interactions may correspond to edges. A typical example of an interaction may 
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be a phone call between two entities, or the co-authorship of a paper between 
two entities. In many cases, these trends of interaction may change over time. 
Such trends include the gradual formation and dissolution of different com- 
munities of interaction. In such cases, a user may wish to perform repeated 
exploratory querying of the data for different kinds of user-defined parameters. 
For example, a user may wish to determine rapidly expanding or contracting 
communities of interest over different time frames. This is difficult to perform 
in a fast data stream because of the one-pass constraints on the computations. 
Some examples of queries which may be performed by a user are as follows: 
(1) Find the communities with substantial increase in interaction level in the 
interval (t - h, t).  We refer to such communities as expanding communities. 
(2) Find the communities with substantial decrease in interaction level in the 
interval (t - h, t )  We refer to such communities as contracting communities. 
(3) Find the communities with the most stable interaction level in the interval 
(t - h, t) .  

In order to resolve such queries, the method in [2] proposes an online an- 
alytical processing framework which separates out online data summarization 
from offline exploratory querying. The process of data summarization stores 
portions of the graph on disk at specific periods of time. This summarized 
data is then used in order to resolve different kinds of queries. The result is 
a method which provides the ability to perform exploratory querying without 
compromising on the quality of the results. In this context, the clustering of the 
graph of interactions is a key component. The fist step is to create a dzrerential 
graph which represents the significant changes in the data interactions over the 
user specified horizon. This is done using the summary information stored on 
the disk. Significant communities of change show up as clusters in this graph. 
The clustering process is able to find sub-graphs which represent a sudden for- 
mation of a cluster of interactions which correspond to the underlying change 
in the data. It has been shown in [2], that this process can be performed in an 
efficient and effective way, and can identify both expanding and contracting 
communities. 

3. On the Effect of Evolution in Data Mining Algorithms 
The discussion in this chapter has so far concentrated only on the problem of 

analyzing and visualizing the change in a data stream directly. In many cases, 
it is also desirable to analyze the evolution in a more indirect way, when such 
streams are used in conjunction with data mining algorithms. In this section, 
we will discuss the effects of evolution on data mining algorithms. The problem 
of mining incremental data dynamically has often been studied in many data 
mining scenarios [7, 10, 12, 241. However, many of these methods are often 
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not designed to work well with data streams since the distribution of the data 
evolves over time. 

Some recent results [13] discuss methods for mining data streams under block 
evolution. We note that these methods are useful for incrementally updating 
the model when evolution has taken place. While the method has a number of 
useful characteristics, it does not attempt to determine the optimal segment of 
the data to be used for modeling purposes or provide an application-specific 
method to weight the relative importance of more recent or past data points. In 
many cases, the user may also desire to have the flexibility to analyze the data 
mining results over different time horizons. For such cases, it is desirable to 
use an online analytical processing framework which can store the underlying 
data in a summarized format over different time horizons. In this respect, it is 
desirable to store summarized snapshots [5,7] of the data over different periods 
of time. 

In order to store the data in a summarized format, we need the following two 
characteristics: 

We need a method for condensing the large number of data points in 
the stream into condensed summary statistics. In this respect the use of 
clustering is a natural choice for data condensation. 

We need a method for storing the condensed statistics over different 
periods of time. This is necessary in order to analyze the characteristics 
of the data over different time horizons. We note that the storage of the 
condensed data at each and every time unit can be expensive both in terms 
of computational resources and storage space. Therefore, a method needs 
to be used so that a small amount of data storage can retain a high level of 
accuracy in horizon-recall. This technique is known as the pyramidal or 
geometric time frame. In this technique, a constant number of snapshots 
of different orders are stored. The snapshots of the ith order occur at 
intervals which are divisible by ai for some a, > 1. It can be shown 
that this storage pattern provides constant guarantees on the accuracy of 
horizon estimation. 

Another property ofthe stored snapshots in [5] is that the corresponding statistics 
show the additivity property. The additivity property ensures that it is possible 
to obtain the statistics over a pre-defined time window by subtracting out the 
statistics of the previous window from those of the current window. Thus, it 
is possible to examine the evolving behavior of the data over different time 
horizons. 

Once the summarized snapshots are stored in this pattern, they can be lever- 
aged for a variety of data mining algorithms. For example, for the case of the 
classification problem [7], the underlying data may show significant change 
trends which result in different optimal time horizons. For this purpose, one 
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can use the statistics over different time horizons. One can use a portion of the 
training stream to determine the horizon which provides the optimal classifica- 
tion accuracy. This value of the horizon is used in order to perform the final 
classification. The results in [7] show that there is a significant improvement in 
accuracy from the use of horizon specific classification. 

This technique is useful not just for the classification problem but also for a 
variety of problem in the evolving scenario. For example, in many cases, one 
may desire to forecast the future behavior of an evolving data stream. In such 
cases, the summary statistics can be used to make broad trends about the future 
behavior of the stream. In general, for the evolving scenario, it is desirable to 
have the following characteristics for data stream mining algorithms: 

It is desirable to leverage temporal locality in order to improve the mining 
effectiveness. The concept of temporal locality refers to the fact that the 
data points in the stream are not randomly distributed. Rather the points at 
a given period in time are closely correlated, and may show specific levels 
of evolution in different regions. In many problems such as classification 
and forecasting, this property can be leveraged in order to improve the 
quality of the mining process. 

rn It is desirable to have the flexibility of performing the mining over differ- 
ent time horizons. In many cases, the optimal results can be obtained only 
after applying the results of the algorithm over a variety of time horizons. 
An example of this case is illustrated in [7], in which the classification 
problem is solved by finding the optimal accuracy over different horizons. 

In many problems, it is possible to perform incremental maintenance 
by using decay-specific algorithms. In such cases, recent points are 
weighted more heavily than older points during the mining process. The 
weight of the data points decay according a pre-defined function which is 
application-specific. This function is typically chosen as an exponential 
decay function whose decay is defined in terms of the exponential decay 
parameter. An example of this situation is the high dimensional projected 
stream clustering algorithm discussed in [6]. 

rn In many cases, synopsis construction algorithms such as sampling may 
not work very well in the context of an evolving data stream. Traditional 
reservoir sampling methods 1251 may end up summarizing the stale his- 
tory of the entire data stream. In such cases, it may be desirable to 
use a biased sampling approach which maintains the temporal stability 
of the stream sample. The broad idea is to construct a stream sample 
which maintain the points in proportion to their decay behavior. This 
is a challenging task for a reservoir construction algorithm, and is not 
necessarily possible for all decay functions. The method in [8] proposes 
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a new method for reservoir sampling in the case of certain kinds of decay 
functions. 

While the work in [13] proposes methods for monitoring evolving data streams, 
this framework does not account for the fact that different methodologies may 
provide the most effective stream analysis in different cases. For some prob- 
lems, it may be desirable to use a decay based model, and for others it may be 
desirable to use only a subset of the data for the mining process. In general, the 
methodology used for a particular algorithm depends upon the details of that 
particular problem and the data. For example, for some problems such as high 
dimensional clustering [6] ,  it may be desirable to use a decay-based approach, 
whereas for other problems such as classification, it may be desirable use the 
statistics over different time horizons in order to optimize the algorithmic effec- 
tiveness. This is because problems such as high dimensional clustering require 
a large amount of data in order to provide effective results, and historical clus- 
ters do provide good insights about the future clusters in the data. Therefore, 
it makes more sense to use all the data, but with an application specific decay- 
based approach which provides the new data greater weight than the older data. 
On the other hand, in problems such as classification, the advantages of using 
more data is much less relevant to the quality of the result than using the data 
which is representative of the current trends in the data. The discussion of this 
section provides clues to the kind of approaches that are useful for re-designing 
data mining algorithms in the presence of evolution. 

4. Conclusions 
In this paper, we discussed the issue of change detection in data streams. 

We discussed different methods for characterizing change in data streams. For 
thus purpose, we discussed the method of velocity density estimation and its 
application to different kinds of visual representations of changes in the under- 
lying data. We also discussed the problem of online community evolution in 
fast data streams. In many of these methods, clustering is a key component 
since it allows us to summarize the data effectively. We also studied the reverse 
problem of how data mining models are maintained when the underlying data 
changes. In this context, we studied the problems of clustering and classifica- 
tion of fast evolving data streams. The key in many ofthese methods is to use an 
online analytical processing methodology which preprocesses and summarizes 
segments of the data stream. These summarized segments can be used for a 
variety of data mining purposes such as clustering and classification. 

Notes 
1. According to Silverman's approximation rule, the smoothing parameter for a data set with n points 

and standard deviation u is given by 1.06. u . n-lI5. For the d-dimensional case, the smoothing parameter 
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along each dimension is determined independently using the corresponding dimension-specific standard 
deviation. 

2. The methodology is also discussed in an earlier chapter of this book. 
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Abstract Large volumes of dynamic stream data pose great challenges to its analysis. 
Besides its dynamic and transient behavior, stream data has another important 
characteristic: multi-dimensionality. Much of stream data resides at a multi- 
dimensional space and at rather low level of abstraction, whereas most analysts 
are interested in relatively high-level dynamic changes in some combination of 
dimensions. To discover high-level dynamic and evolving characteristics, one 
may need to perform multi-level, multi-dimensional on-line analytical process- 
ing (OLAP) of stream data. Such necessity calls for the investigation of new ar- 
chitectures that may facilitate on-line analytical processing of multi-dimensional 
stream data. 

In this chapter, we introduce an interesting stream-cube architecture that ef- 
fectively performs on-line partial aggregation of multi-dimensional stream data, 
captures the essential dynamic and evolving characteristics of data streams, and 
facilitates fast OLAP on stream data. Three important techniques are proposed for 
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the design and implementation of stream cubes. First, a tilted time frame model 
is proposed to register time-related data in a multi-resolution model: The more 
recent data are registered at finer resolution, whereas the more distant data are 
registered at coarser resolution. This design reduces the overall storage require- 
ments of time-related data and adapts nicely to the data analysis tasks commonly 
encountered in practice. Second, instead of materializing cuboids at all levels, 
two critical layers: observation layer and minimal interesting layer, are main- 
tained to support routine as well as flexible analysis with minimal computation 
cost. Third, an efficient stream data cubing algorithm is developed that computes 
only the layers (cuboids) along apopularpath and leaves the other cuboids for 
on-line, query-driven computation. Based on this design methodology, stream 
data cube can be constructed and maintained incrementally with reasonable mem- 
ory space, computation cost, and query response time. This is verified by our 
substantial performance study. 

Stream cube architecture facilitates online analytical processing of stream 
data. It also forms a preliminary structure for online stream mining. The impact 
of the design and implementation of stream cube in the context of stream mining 
is also discussed in the chapter. 

Keywords: Data streams, multidimensional analysis, OLAP, data cube, stream cube, tilted 
time frame, partial materialization. 

1. Introduction 
A fundamental difference in the analysis of stream data from that of non- 

stream one is that the stream data is generated in huge volumes, flowing in- 
and-out dynamically, and changing rapidly. Due to limited resources available 
and the usual requirements of fast response, most data streams may not be fully 
stored and may only be examined in a single pass. These characteristics of 
stream data have been emphasized and explored in their investigations by many 
researchers, such as ([6, 8, 17, 18, 16]), and efficient stream data querying, 
counting, clustering and classification algorithms have been proposed, such as 
([2, 3, 22, 17, 18, 16, 251). However, there is another important characteristic 
of stream data that has not drawn enough attention: Most of stream data sets 
are multidimensional in nature and reside at rather low level of abstraction, 
whereas an analyst is often more interested in higher levels of abstraction in 
a small subset of dimension combinations. Similar to OLAP analysis of static 
data, multi-level, multi-dimensional on-line analysis should be performed on 
stream data as well. This can be seen from the following example. 

EXAMPLE 6.1 One may observe infinite streams of power usage data in a 
power supply system. The lowest granularity of such data can be individual 
household and second. Although there are tremendous varieties at analyzing 
such data, the most useful online stream data analysis could be the analysis of 
the fluctuation of power usage at certain dimension combinations and at certain 
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high levels, such as by region and by quarter (of an hour), making timely power 
supply adjustments and handling unusual situations. o 

One may easily link such multi-dimensional analysis with the online ana- 
lytical processing of multi-dimensional nonstream data sets. For analyzing the 
characteristics of nonstream data, the most influential methodology is to use 
data warehouse and OLAP technology ([14, 111). With this technology, data 
from different sources are integrated, and then aggregated in multi-dimensional 
space, either completely or partially, generating data cubes. The computed 
cubes can be stored in the form ofrelations or multi-dimensional arrays ([I, 3 11) 
to facilitate fast on-line data analysis. In recent years, a large number of data 
warehouses have been successfully constructed and deployed in applications, 
and data cube has become an essential component in most data warehouse sys- 
tems and in some extended relational database systems for multidimensional 
data analysis and intelligent decision support. 

Can we extend the data cube and OLAP technology from the analysis of 
static, pre-integrated data to that of dynamically changing stream data, in- 
cluding time-series data, scientijk and engineering data, and data produced 
in other dynamic environments, such as power supply, network traflc, stock 
exchange, telecommunication data flbw, Web click streams, weather or envi- 
ronment monitoring? The answer to this question may not be so easy since, 
as everyone knows, it takes great efforts and substantial storage space to com- 
pute and maintain static data cubes. A dynamic stream cube may demand an 
even greater computing power and storage space. How can we have suflcient 
resources to compute and store a dynamic stream cube? 

In this chapter, we examine this issue and propose an interesting architecture, 
called stream cube, for on-line analytical processing of voluminous, infinite, 
and dynamic stream data, with the following design considerations. 

1 For analysis of stream data, it is unrealistic to store and analyze data with 
an infinitely long and fine scale on time. We propose a tilted time frame 
as the general model of time dimension. In the tilted time frame, time 
is registered at different levels of granularity. The most recent time is 
registered at the finest granularity; the more distant time is registered at 
coarser granularity; and the level of coarseness depends on the application 
requirements and on how distant the time point is from the current one. 
This model is sufficient for most analysis tasks, and at the same time it 
also ensures that the total amount of data to retain in memory or to be 
stored on disk is quite limited. 

2 With limited memory space in stream data analysis, it is often still too 
costly to store a precomputed cube, even with the tilted time frame. We 
propose to compute and store only two critical layers (which are es- 
sentially cuboids) in the cube: (1) an observation layer, called o-layer, 
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which is the layer that an analyst would like to check and make deci- 
sions for either signaling the exceptions or drilling on the exception cells 
down to lower layers to find their corresponding lower level exceptions; 
and (2) the minimal interesting layer, called m-layer, which is the mini- 
mal layer that an analyst would like to examine, since it is often neither 
cost-effective nor practically interesting to examine the minute detail of 
stream data. For example, in Example 1, we assume that the o-layer is 
user-category, region, and quarter, while the m-layer is user, city-block, 
and minute. 

3 Storing a cube at only two critical layers leaves much room on what and 
how to compute for the cuboids between the two layers. We propose 
one method, called popular-path cubing, which rolls up the cuboids 
from the m-layer to the o-layer, by following the most popular drilling 
path, materializes only the layers along the path, and leaves other layers 
to be computed at OLAP query time. An H-tree data structure is used 
here to facilitate efficient pre- and on-line computation. Our performance 
study shows that this method achieves a good trade-off between space, 
computation time, and flexibility, and has both quick aggregation time 
and query answering time. 

The remaining of the paper is organized as follows. In Section 2, we define 
the basic concepts and introduce the problem. In Section 3, we present an archi- 
tectural design for on-line analysis of stream data by introducing the concepts of 
tilted time frame and critical layers. In Section 4, we present the popular-path 
cubing method, an efficient algorithm for stream data cube computation that 
supports on-line analytical processing of stream data. Our experiments and 
performance study of the proposed methods are presented in Section 5. The 
related work and possible extensions of the model are discussed in Section 6, 
and our study is concluded in Section 7. 

2. Problem Definition 
Let DL? be a relational table, called the base table, of a given cube. The set 

of all attributes A in DL? are partitioned into two subsets, the dimensional 
attributes DIM and the measure attributes M (so DIM U M = A and 
DIM n M = 0). The measure attributes functionally depend on the dimen- 
sional attributes in DB and are defined in the context of data cube using some 
typical aggregate functions, such as COUNT, SUM, AVG, or more sophisti- 
cated computational functions, such as standard deviation and regression. 

A tuple with schema A in a multi-dimensional space (i.e., in the context of 
data cube) is called a cell. Given three distinct cells cl, c2 and c3, cl is an 
ancestor of c2, and c2 a descendant of cl iff on every dimensional attribute, 
either cl and c2 share the same value, or cl's value is a generalized value of 
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c2's in the dimension's concept hierarchy. c2 is a sibling of c3 iff c2 and c3 
have identical values in all dimensions except one dimension A where c2[A] 
and c3[A] have the same parent in the dimension's domain hierarchy. A cell 
which has k non-* values is called a k-d cell. (We use "*" to indicate "all", i.e., 
the highest level on any dimension.) 

A tuple c E D is called a base cell. A base cell does not have any descendant. 
A cell c is an aggregated cell iff it is an ancestor of some base cell. For each 
aggregated cell c, its values on the measure attributes are derived from the 
complete set of descendant base cells of c. An aggregated cell c is an iceberg 
cell iff its measure value satisfies a specified iceberg condition, such as measure 
2 val The data cube that consists of all and only the iceberg cells satisfying a 
specified iceberg condition I is called the iceberg cube of a database DB under 
condition I. 

Notice that in stream data analysis, besides the popularly used SQL aggregate- 
based measures, such as COUNT, SUM, MAX, MIN, and AVG, regression is 
a useful measure. A stream data cell compression technique LCR (linearly 
compressed representation) is developed in ([12]) to support efficient on-line 
regression analysis of stream data in data cubes. The study in ([12]) shows 
that for linear and multiple linear regression analysis, only a small number of 
regression measures rather than the complete stream of data need to be reg- 
istered. This holds for regression on both the time dimension and the other 
dimensions. Since it takes a much smaller amount of space and time to handle 
regression measures in a multi-dimensional space than handling the stream data 
itself, it is preferable to construct regression(-measured) cubes by computing 
such regression measures. 

A data stream is considered as a voluminous, infinite flow of data records, 
such as power supply streams, Web click streams, and telephone calling streams. 
The data is collected at the most detailed level in a multi-dimensional space, 
which may represent time, location, user, and other semantic information. Due 
to the huge amount of data and the transient behavior of data streams, most 
of the computations will scan a data stream only once. Moreover, the direct 
computation of measures at the most detailed level may generate a huge number 
of results but may not be able to disclose the general characteristics and trends 
of data streams. Thus data stream analysis will require to consider aggregations 
and analysis at multi-dimensional and multi-level space. 

Our task is to support eficient, high-level, on-line, multi-dimensional analy- 
sis of such data streams in order tofind unusual (exceptional) changes of trends, 
according to users' interest, based on multi-dimensional numerical measures. 
This may involve construction of a data cube, if feasible, to facilitate on-line, 
flexible analysis. 
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3. Architecture for On-line Analysis of Data Streams 
To facilitate on-line, multi-dimensional analysis of data streams, we propose 

a stream-cube architecture with the following features: (1) tilted time frame, 
(2) two critical layers: a minimal interesting layer and an observation layer, 
and (3) partial computation of data cubes by popular-path cubing. The stream 
data cubes so constructed are much smaller than those constructed from the raw 
stream data but will still be effective for multi-dimensional stream data analysis 
tasks. 

3.1 Tilted time frame 
In stream data analysis, people are usually interested in recent changes at a 

fine scale, but long term changes at a coarse scale. Naturally, one can register 
time at different levels of granularity. The most recent time is registered at the 
finest granularity; the more distant time is registered at coarser granularity; and 
the level of coarseness depends on the application requirements and on how 
distant the time point is from the current one. 

There are many possible ways to design a titled time frame. We adopt three 
kinds of models: (1) natural tilted time frame model (Fig. 6.1), (2) logarithmic 
scale tilted time frame model (Fig. 6.2), and (3) progressive logarithmic tilted 
time frame model (Fig. 6.3). 

Figure 6.1. A tilted time frame with natural time partition 

7 days 

Figure 6.2. A tilted time frame with logarithmic time partition 

A natural tilted time frame model is shown in Fig. 6.1, where the time frame 
is structured in multiple granularity based on natural time scale: the most recent 
4 quarters (1 5 minutes), then the last 24 hours, 3 1 days, and 12 months (the 
concrete scale will be determined by applications). Based on this model, one 
can compute frequent itemsets in the last hour with the precision of quarter of an 
hour, the last day with the precision ofhour, and so on, until the whole year, with 
the precision of month (we align the time axis with the natural calendar time. 

1 1 1 1 1 1  1 1 1 1 1 1 1 . . . 1 1 1 1 1 1  1 1 1  1 1 1 1  *-• 1 1 1  w 

Time Now 

24 hours 4 qtrs 15 minutes 
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Figure 6.3. A tilted time frame with progressive logarithmic time partition 

Thus, for each granularity level of the tilt time frame, there might be a partial 
interval which is less than a full unit at that level.) This model registers only 
4+24+31+ 12 = 71 units of time for a year instead of 366 x 24 x 4 = 35,136 
units, a saving of about 495 times, with an acceptable trade-off of the grain of 
granularity at a distant time. 

The second choice is logarithmic tilted time model as shown in Fig. 6.2, where 
the time frame is structured in multiple granularity according to a logarithmic 
scale. Suppose the current frame holds the transactions in the current quarter. 
Then the remaining slots are for the last quarter, the next two quarters, 4 quarters, 
8 quarters, 16 quarters, etc., growing at an exponential rate. According to this 
model, with one year of data and the finest precision at quarter, we will need 
log2(365 x 24 x 4) + 1 = 16.1 units of time instead of 366 x 24 x 4 = 
35,136 units. That is, we will just need 17 time frames to store the compressed 
information. 

The third choice is aprogressive logarithmic tilted time frame, where snap- 
shots are stored at different levels of granularity depending on the recency. 
Snapshots are put into different frame numbers, varying from 1 to max- f rame, 
where log2 (T) - max-capacity < max- f rame 5 log2 (T) , max-capacity 
is the maximal number of snapshots held in each frame, and T is the clock time 
elapsed since the beginning of the stream. 

Each snapshot is represented by its timestamp. The rules for insertion of a 
snapshot t (at time t) into the snapshot frame table are defined as follows: (1) 
if (t mod 2i) = 0 but (t mod 2i+1) # 0, t is inserted into frame-number 
i if i < max-f rame; otherwise (i.e., i > max-f rame), t is inserted into 
max- f rame; and (2) each slot has a max-capacity (which is 3 in our example 
of Fig. 6.3). At the insertion o f t  into frame-number i, if the slot already 
reaches its max-capacity, the oldest snapshot in this frame is removed and 
the new snapshot inserted. For example, at time 70, since (70 mod 2l) = 0 
but (70 mod 22) # 0,70 is inserted into framenumber 1 which knocks out 
the oldest snapshot 58 if the slot capacity is 3. Also, at time 64, since (64 
mod 26) = 0 but max-frame = 5,  so 64 has to be inserted into frame 5. 
Following this rule, when slot capacity is 3, the following snapshots are stored 
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in the tilted time frame table: 16,24,32,40,48, 52,56,60,62,64,65,66,67, 
68,69,70, as shown in Fig. 6.3. From the table, one can see that the closer to 
the current time, the denser are the snapshots stored. 

In the logarithmic and progressive logarithmic models discussed above, we 
have assumed that the base is 2. Similar rules can be applied to any base a ,  
where a is an integer and a > 1. The tilted time models shown above are 
sufficient for usual time-related queries, and at the same time it ensures that the 
total amount of data to retain in memory and/or to be computed is small. 

Both the natural tilted frame model and the progressive logarithmic tilted time 
frame model provide a natural and systematic way for incremental insertion of 
data in new frames and gradually fading out the old ones. When fading out 
the old ones, their measures are properly propagated to their corresponding 
retained timeframe (e.g., from a quarter to its corresponding hour) so that these 
values are retained in the aggregated form. To simplify our discussion, we will 
only use the natural titled time frame model in the following discussions. The 
methods derived from this time frame can be extended either directly or with 
minor modifications to other time frames. 

In our data cube design, we assume that each cell in the base cuboid and in 
an aggregate cuboid contains a tilted time frame, for storing and propagating 
measures in the computation. This tilted time frame model is sufficient to handle 
usual time-related queries and mining, and at the same time it ensures that the 
total amount of data to retain in memory andlor to be computed is small. 

3.2 Critical layers 
Even with the tilted time frame model, it could still be too costly to dynam- 

ically compute and store a full cube since such a cube may have quite a few 
dimensions, each containing multiple levels with many distinct values. Since 
stream data analysis has only limited memory space but requires fast response 
time, a realistic arrangement is to compute and store only some mission-critical 
cuboids in the cube. 

In our design, two critical cuboids are identified due to their conceptual 
and computational importance in stream data analysis. We call these cuboids 
layers and suggest to compute and store them dynamically. The first layer, 
called m-layer, is the minimally interesting layer that an analyst would like to 
study. It is necessary to have such a layer since it is often neither cost-effective 
nor practically interesting to examine the minute detail of stream data. The 
second layer, called o-layer, is the observation layer at which an analyst (or an 
automated system) would like to check and make decisions of either signaling 
the exceptions, or drilling on the exception cells down to lower layers to find 
their lower-level exceptional descendants. 
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(user-group, street-block, minute) 

t m-layer (minimal interest) 

(individual-user, strkt-address, second) 
(primitive) stream data layer 

Figure 6.4. Two critical layers in the stream cube 

Example 3. Assume that "(individual-user, streetxddress, second)" forms the 
primitive layer of the input stream data in Ex. 1. With the natural tilted time 
frame shown in Figure 6.1, the two critical layers for power supply analysis are: 
(1) the m-layer: (user-group, streetbl ock, minute), and (2) the o-layer: (*, 
city, quarter), as shown in Figure 6.4. 

Based on this design, the cuboids lower than the m-layer will not need to be 
computed since they are beyond the minimal interest of users. Thus the minimal 
interesting cells that our base cuboid needs to be computed and stored will be 
the aggregate cells computed with grouping by user-group, street-block, and 
minute) . This can be done by aggregations (1) on two dimensions, user 
and location, by rolling up from individual-user to user-group and from 
street-address to street-block, respectively, and (2) on time dimension by 
rolling up from second to minute. 

Similarly, the cuboids at the o-layer should be computed dynamically ac- 
cording to the tilted time frame model as well. This is the layer that an analyst 
takes as an observation deck, watching the changes of the current stream data 
by examining the slope of changes at this layer to make decisions. The layer 
can be obtained by rolling up the cube (1) along two dimensions to * (which 
means all user-category) and city, respectively, and (2) along time dimension 
to quarter. If something unusual is observed, the analyst can drill down to 
examine the details and the exceptional cells at low levels. o 

3.3 Partial materialization of stream cube 
Materializing a cube at only two critical layers leaves much room for how 

to compute the cuboids in between. These cuboids can be precomputed fully, 
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partially, not at all (i.e., leave everything computed on-the-fly). Let us first 
examine the feasibility of each possible choice in the environment of stream 
data. Since there may be a large number of cuboids between these two layers 
and each may contain many cells, it is often too costly in both space and time to 
fully materialize these cuboids, especially for stream data. On the other hand, 
materializing nothing forces all the aggregate cells to be computed on-the-fly, 
which may slow down the response time substantially. Thus, it is clear that 
partial materialization of a stream cube is a viable choice. 

Partial materialization of data cubes has been studied extensively in previous 
works, such as ([21,11]). With the concern of both space and on-line computa- 
tion time, partial computation of dynamic stream cubes poses more challenging 
issues than its static counterpart: One has to ensure not only the limited pre- 
computation time and the limited size of a precomputed cube, but also efficient 
online incremental updating upon the arrival of new stream data, as well as 
fast online drilling to find interesting aggregates and patterns. Obviously, only 
careful design may lead to computing a rather small partial stream cube, fast 
updating such a cube, and fast online drilling. We will examine how to design 
such a stream cube in the next section. 

4. Stream Data Cube Computation 
We first examine whether iceberg cube can be an interesting model for par- 

tially materialized stream cube. In data cube computation, iceberg cube ( [7])  
which stores only the aggregate cells that satisfy an iceberg condition has been 
used popularly as a data cube architecture since it may substantially reduce the 
size of a data cube when data is sparse. For example, for a sales data cube, one 
may want to only retain the (cube) cells (i.e., aggregates) containing more than 2 
items. This condition is called as an iceberg condition, and the cube containing 
only such cells satisfying the iceberg condition is called an iceberg cube. In 
stream data analysis, people may often be interested in only the substantially 
important or exceptional cube cells, and such important or exceptional condi- 
tions can be formulated as typical icebergconditions. Thus it seems that iceberg 
cube could be an interesting model for stream cube architecture. Unfortunately, 
iceberg cube cannot accommodate the incremental update with the constant ar- 
rival of new data and thus cannot be used as the architecture of stream cube. 
We have the following observation. 

OBSERVATION (NO iceberg cubing for stream data) The iceberg cube model 
does not fit the stream cube architecture. Nor does the exceptional cube model. 

Rationale. With the incremental and gradual arrival of new stream data, as 
well as the incremental fading of the obsolete data from the time scope of a data 
cube, it is required that incremental update be performed on such a stream data 
cube. It is unrealistic to constantly recompute the data cube from scratch upon 
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incremental updates due to the tremendous cost of recomputing the cube on 
the fly. Unfortunately, such an incremental model does not fit the iceberg cube 
computation model due to the following observation: Let a cell "(di, . . . , dk) : 
mik" represent a k - i + 1 dimension cell with di, . . . , dk as its corresponding 
dimension values and mik as its measure value. If SAT(mik, iceberg-cond) 
is false, i.e., mik does not satisfy the iceberg condition, the cell is dropped 
Erom the iceberg cube. However, at a later time slot t', the corresponding cube 
cell may get a new measure mik related to t'. However, since mik has been 
dropped at a previous instance of time due to its inability to satisfy the iceberg 
condition, the new measure for this cell cannot be calculated correctly without 
such information. Thus one cannot use the iceberg architecture to model a 
stream cube unless recomputing the measure from the based cuboid upon each 
update. Similar reasoning can be applied to the case of exceptional cell cubes 
since the exceptional condition can be viewed as a special iceberg condition. o 

Since iceberg cube cannot be used as a stream cube model, but materializing 
the full cube is too costly both in computation time and storage space, we 
propose to compute only apopularpath of the cube as our partial computation 
of stream data cube, as described below. 

Based on the notions of the minimal interesting layer (the m-layer) and the 
tilted time frame, stream data can be directly aggregated to this layer according 
to the tilted time scale. Then the data can be further aggregated following 
one popular drilling path to reach the observation layer. That is, the popular 
path approach computes and maintains a single popular aggregation path from 
m-layer to o-layer so that queries directly on those (layers) along the popular 
path can be answered without further computation, whereas those deviating 
from the path can be answered with minimal online computation from those 
reachable from the computed layers. Such cost reduction makes possible the 
OLAP-styled exploration of cubes in stream data analysis. 

To facilitate efficient computation and storage of the popular path of the 
stream cube, a compact data structure needs to be introduced so that the space 
taken in the computation of aggregations is minimized. A data structure, called 
H-tree, a hyper-linked tree structure introduced in ([20]), is revised and adopted 
here to ensure that a compact structure is maintained in memory for efficient 
computation of multi-dimensional and multi-level aggregations. 

We present these ideas using an example. 

Example 4. Suppose the stream data to be analyzed contains 3 dimensions, 
A, B and C, each with 3 levels of abstraction (excluding the highest level 
of abstraction "*"), as (A1, A2, A3), (B1, B2, B3), (C1, C2, C3), where the 
ordering of "* > A1 > A2 > A3" forms a high-to-low hierarchy, and so on. 
The minimal interesting layer (the m-layer) is (A2, B2, C2), and the o-layer 
is (A1, *, e l ) .  From the m-layer (the bottom cuboid) to the o-layer (the top- 
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cuboid to be computed), there are in total 2 x 3 x 2 = 12 cuboids, as shown in 
Figure 6.5. 

Figure 6.5. Cube structure from the m-layer to the o-layer 

Suppose that the popular drilling path is given (which can usually be de- 
rived based on domain expert knowledge, query history, and statistical analysis 
of the sizes of intermediate cuboids). Assume that the given popular path is 
((4 *, C1) + (Al, *, Cz) - (A2, *, C2) + (A27 B1, C2) + (A27 B2, C2)), 
shown as the dark-line path in Figure 6.5. Then each path of an H-tree from 
root to leaf is ordered the same as the popular path. 

This ordering generates a compact tree because the set of low level nodes that 
share the same set of high level ancestors will share the same prefix path using 
the tree structure. Each tuple, which represents the currently in-flow stream 
data, after being generalized to the m-layer, is inserted into the corresponding 
path of the H-tree. An example H-tree is shown in Fig. 6.6. In the leaf node 
of each path, we store relevant measure information of the cells of the m-layer. 
The measures of the cells at the upper layers are computed using the H-tree and 
its associated links. 

An obvious advantage of thepopularpath approach is that the nonleaf nodes 
represent the cells of those layers (cuboids) along the popular path. Thus these 
nonleaf nodes naturally serve as the cells of the cuboids along the path. That is, 
it serves as a data structure for intermediate computation as well as the storage 
area for the computed measures of the layers (i.e., cuboids) along the path. 

Furthermore, the H-tree structure facilitates the computation of other cuboids 
or cells in those cuboids. When a query or a drill-down clicking requests to 
compute cells outside the popular path, one can find the closest lower level 
computed cells and use such intermediate computation results to compute the 
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measures requested, because the corresponding cells can be found via a linked 
list of all the corresponding nodes contributing to the cells. o 

Figure 6.6. H-tree structure for cube computation 

4.1 Algorithms for cube computation 
Algorithms related to stream cube in general handle the following three cases: 

(1) the initial computation of (partially materialized) stream cube by popular- 
path approach, (2)  incremental update of stream cube, and (3) online query 
answering with the popular-path-based stream cube. 

First, we present an algorithm for computation of (initial) partially material- 
ized stream cube by popular-path approach. 

ALGORITHM l(Popular-path-based stream cube computation) Comput- 
ing initial stream cube, i.e., the cuboids along the popular-path between the 
m-layer and the o-layer, based on the currently collected set of input stream 
data. 

Input. (1) multi-dimensional multi-level stream data (which consists of a set 
of tuples, each carrying the corresponding time stamps), (2) the m- and o-layer 
specifications, and (3) a given popular drilling path. 

Output. All the aggregated cells of the cuboids along the popular path between 
the m- and o-layers. 

Method. 

1 Each tuple, which represents a minimal addressing unit of multi-dimensional 
multi-level stream data, is scanned once and generalized to the m-layer. 
The generalized tuple is then inserted into the corresponding path of the 
H-tree, increasing the count and aggregating the measure values of the 
corresponding leafnode in the corresponding slot of the tilted time frame. 
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2 Since each branch ofthe H-tree is organized in the same order as the spec- 
ified popular path, aggregation for each corresponding slot in the tilted 
time frame is performed from the m-layer all the way up to the o-layer by 
aggregating along the popular path. The step-by-step aggregation is per- 
formed while inserting the new generalized tuples in the corresponding 
time slot. 

3 The aggregated cells are stored in the nonleaf nodes in the H-tree, forming 
the computed cuboids along the popular path. 

Analysis. The H-tree ordering is based on the popular drilling path given by 
users or experts. This ordering facilitates the computation and storage of the 
cuboids along the path. The aggregations along the drilling path from the m- 
layer to the o-layer are performed during the generalizing of the stream data 
to the m-layer, which takes only one scan of stream data. Since all the cells 
to be computed are the cuboids along the popular path, and the cuboids to be 
computed are the nonleaf nodes associated with the H-tree, both space and 
computation overheads are minimized. o 

Second, we discuss how to perform incremental update of the stream data 
cube in the popular-path cubing approach. Here we deal with the "always- 
grow" nature of time-series stream data in an on-line, continuously growing 
manner. 

The process is essentially an incremental computation method illustrated 
below, using the tilted time frame of Figure 6.1. Assuming that the memory 
contains the previously computed m- and o-layers, plus the cuboids along the 
popular path, and stream data arrives at every second. The new stream data is 
accumulated in the corresponding H-tree leaf nodes. Suppose the time granu- 
larity of the m-layer is minute. At the end of every minute, the accumulated 
data will be propagated from the leaf to the corresponding higher level cuboids. 
When reaching a cuboid whose time granularity is quarter, the rolled measure 
information remains in the corresponding minute slot until it reaches the full 
quarter (i.e., 15 minutes) and then it rolls up to even higher levels, and so on. 

Notice in this process, the measure in the time interval of each cuboid will be 
accumulated and promoted to the corresponding coarser time granularity, when 
the accumulated data reaches the corresponding time boundary. For example, 
the measure information of every four quarters will be aggregated to one hour 
and be promoted to the hour slot, and in the mean time, the quarter slots will 
still retain sufficient information for quarter-based analysis. This design ensures 
that although the stream data flows in-and-out, measure always keeps up to the 
most recent granularity time unit at each layer. 

Third, we examine how an online query can be answered with such a partially 
materialized popular-path data cube. If a query inquires on the information that 
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is completely contained in the popular-path cuboids, it can be answered by 
directly retrieving the information stored in the popular-path cuboids. Thus our 
discussion will focus on the kind of queries that involve the aggregate cells not 
contained in the popular-path cuboids. 

A multi-dimensional multi-level stream query usually provides a few instan- 
tiated constants and inquires information related to one or a small number of 
dimensions. Thus one can consider a query involving a set of instantiated di- 
mensions, {D&, . . . , Dcj), and a set of inquired dimensions, {Dql, . . . , Dqk). 
The set of relevant dimensions, D,, is the union of the sets of instantiated di- 
mensions and the inquired dimensions. For maximal use of the precomputed 
information available in the popular path cuboids, one needs to find the highest- 
level popular path cuboids that contains Dr. If one cannot fhd such a cuboid 
in the path, one will have to use the base cuboid at the m-layer to compute 
it. In either case, the remaining computation can be performed by fetching 
the relevant data set from the so-found cuboid and then computing the cuboid 
consisting of the inquired dimensions. 

5. Performance Study 
To evaluate the effectiveness and efficiency of our proposed stream cube and 

OLAP computation methods, we performed an extensive performance study 
on synthetic datasets. Our result shows that the total memory and computation 
time taken by the proposed algorithms are small, in comparison with several 
other alternatives, and it is realistic to compute such a partially aggregated 
cube, incrementally update them, and perform fast OLAP analysis of stream 
data using such precomputed cube. 

Besides our experiments on the synthetic datasets, the methods have also 
been tested on the real datasets in the MAIDS (Mining Alarming Incidents in 
Data Streams) project at NCSA ([lo]). The multidimensional analysis engine 
of the MAID system is constructed based on the algorithms presented in this 
paper. The experiments demonstrate similar performance results as reported in 
this study. 

Here we report our performance studies with synthetic data streams of various 
characteristics. The data stream is generated by a data generator similar in spirit 
to the IBM data generator (151) designed for testing data mining algorithms. The 
convention for the data sets is as follows: D3L3ClOT400K means there are 3 
dimensions, each dimension contains 3 levels (from the m-layer to the o-layer, 
inclusive), the node fan-out factor (cardinality) is 10 (i.e., 10 children per node), 
and there are in total 400K merged m-layer tuples. 

Notice that all the experiments are conducted in a static environment as a 
simulation of the online stream processing. This is because the cube compu- 
tation, especially for full cube and top& cube, may take much more time than 
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Figure 6.7. Cube computation: time and memory usage vs. # tuples at the m-layer for the data 
set D5L3C10 

the stream flow allows. If this is performed in the online streaming environ- 
ment, substantial amount of stream data could have been lost due to the slow 
computation of such data cubes. This simulation serves our purpose since it 
clear demonstrates the cost and the possible delays of stream cubing and indi- 
cates what could be the realistic choice if they were put in a dynamic streaming 
environment. 

All experiments were conducted on a 2GHz Pentium PC with 1 GB main 
memory, running Microsoft Windows-XP Server. All the methods were imple- 
mented using Sun Microsystems' Java 1.3.1. 

Our design framework has some obvious performance advantages over 
some alternatives in a few aspects, including (1) tilted time frame vs. full non- 
tilted time frame, (2) using minimal interesting layer vs. examiningstream data 
at the raw data layer, and (3) computing the cube up to the apex layer vs. 
computing it up to the observation layer. Consequently, our feasibility study 
will not compare the design that does not have such advantages since they will 
be obvious losers. 

Since a data analyst needs fast on-line response, and both space and time 
are critical in processing, we examine both time and space consumption. In 
our study, besides presenting the total time and memory taken to compute and 
store such a stream cube, we compare the two measures (time and space) of the 
popular path approach against two alternatives: (1) the full-cubing approach, 
i.e., materializing all the cuboids between the m- and o- layers, and (2) the 
top-k cubing approach, i.e., materializing only the top-k measured cells of the 
cuboids between the m- and o- layers, and we set top-lc threshold to be lo%, i.e., 
only top 10% (in measure) cells will be stored at each layer (cuboid). Notice 



Multi-Dimensional Analysis of Data Streams Using Stream Cubes 119 

that top-k cubing cannot be used for incremental stream cubing. However, 
since people may like to pay attention only to top-k cubes, we still put it into 
our performance study (as initial cube computation). From the performance 
results, one can see that if top-k cubing cannot compete with the popular path 
approach, with its difficulty at handling incremental updating, it will not likely 
be a choice for stream cubing architecture. 

Number of Dimensions Number of Dimensions 

a) Time vs. # dimensions b) Space vs. # dimensions 

Figure 6.8. Cube computation: time and space vs. # of dimensions for the data set 
L3ClOT100K 

The performance results of stream data cubing (cube computation) are re- 
ported fiom Figure 6.7 to Figure 6.9. 

Figure 6.7 shows the processing time and memory usage for the three ap- 
proaches, with increasing size of the data set, where the size is measured as the 
number of tuples at the m-layer for the data set D5L3C10. Since full-cubing 
and top-k cubing compute all the cells from the m-layer all the way up to the 
o-layer, their total processing time is much higher than popular-path. Also, 
since full-cubing saves all the cube cells, its space consumption is much higher 
than popular-path. The memory usage of top-k cubing falls in between of the 
two approaches, and the concrete amount will depend on the k value. 

Figure 6.8 shows the processing time and memory usage for the three ap- 
proaches, with an increasing number of dimensions, for the data set L3ClOT 100K. 
Figure 6.9 shows the processing time and memory usage for the three ap- 
proaches, with an increasing number of levels, for the data set D5ClOT50K. 
The performance results show that popular-path is more efficient than both full- 
cubing and top-k cubing in computation time and memory usage. Moreover, 
one can see that increment of dimensions has much stronger impact on the 
computation cost (both time and space) in comparison with the increment of 
levels. 
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Figure 6.9. Cube computation: time and space vs. # of levels for the data set D5ClOT50K 

Since incremental update of stream data cube carries the similar comparative 
costs for both popular-path and full-cubing approaches, and moreover, top4 
cubing is inappropriate for incremental updating, we will not present this part of 
performance comparison. Notice that for incrementally computing the newly 
generated stream data, the computation time should be shorter than that 
shown here due to less number of cells involved in computation although the 
total memory usage may not reduce due to the need to store data in the layers 
along the popular path between two critical layers in the main memory. 

Performance study has also been conducted on online query processing, 
which also shows the superior efficiency of the popular-path approach in com- 
parison with other alternatives. Thus we conclude that popular-path is an effi- 
cient and feasible method for computing multi-dimensional, multi-level stream 
cubes. 

6. Related Work 
Our work is related to on-line analytical processing and mining in data 

cubes, and management and mining of stream data. We briefly review previous 
research in these areas and point out the differences from our work. 

In data warehousing and OLAP, much progress has been made on the effi- 
cient support of standard and advanced OLAP queries in data cubes, including 
selective materialization ([21]), cube computation ([7, 20, 30, 27]), cube gra- 
dient analysis ([23, 13]), exception ([26]), intelligent roll-up ([28]), and high- 
dimensional OLAP analysis ([24]). However, previous studies do not consider 
the support for stream data, which needs to handle huge amount of fast chang- 
ing stream data and restricts that a data stream can be scanned only once. In 
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contrast, our work considers complex measures in the form of stream data and 
studies OLAP and mining over partially materialized stream data cubes. Our 
data structure, to certain extent, extend the previous work on H-tree and H- 
cubing ([20]). However, instead of computing a materialized data cube as in 
H-cubing, we only use the H-tree structure to store a small number of cuboids 
along the popular path. This will save substantial amount of computation time 
and storage space and leads to high performance in both cube computation 
and query processing. We have also studied whether it is appropriate to use 
other cube structures, such as star-trees in Starcubing ([30]), dense-sparse par- 
titioning in MM-cubing ([27]) and shell-fragments in high-dimensional OLAP 
([24]). Our conclusion is that H-tree is still the most appropriate structure since 
most other structure needs to either scan data set more than once or know the 
sparse or dense part beforehand, which does not fit the single-scan and dynamic 
nature of data streams. 

Recently, there have been intensive studies on the management and querying 
of stream data ([8, 17, 18, 16]), and data mining (classification and clustering) 
on stream data ([22, 19, 25, 29, 2, 15, 3, 41). Although such studies lead to 
deep insight and interesting results on stream query processing and stream data 
mining, they do not address the issues of multidimensional, online analytical 
processing of stream data. Multidimensional stream data analysis is an essential 
step to understand the general statistics, trends and outliers as well as other data 
characteristics of online stream data and will play an essential role in stream 
data analysis. This study sets a framework and outlines an interesting approach 
to stream cubing and stream OLAP, and distinguishes itself from the previous 
works on stream query processing and stream data mining. 

7. Possible Extensions 
There are many potential extensions of the work towards comprehensive, 

high performance analysis of data streams. Here we outline a few. 

Disk-based stream cube. Although a stream cube usually retains in 
main memory for fast computation, updating, and accessing, it is im- 
portant to have its important or substantial portion stored or mirrored 
on disk, which may enhance data reliability and system performance. 
There are several ways to do it. First, based on the design of the tilted 
time frame, the distant time portion in the data cube can be stored on disk. 
This may help reduce the total main memory requirement and the update 
overhead. The incremental propagation of data in such distant portion 
can be done by other processors using other memory space. Second, to 
ensure that the data is not lost in case of system error or power failure, it 
is important to keep a mirror copy of the stream data cube on disk. Such a 
mirroring process can be processed in parallel by other processors. Also, 
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it is possible that a stream cube may miss a period of data due to software 
error, equipment malbction, system failure, or other unexpected rea- 
sons. Thus a robust stream data cube should build the bctionality to run 
despite the missing of a short period of data in the tilted time frame. The 
data so missed can be treated by special routines, like data smoothing, 
data cleaning, or other special handling so that the overall stream data 
can be interpreted correctly without interruption. 

Computing complex measures in stream cubes. Although we did 
not discuss the computation of complex measures in the data cube 
environment, it isobviousthat complexmeasures, such as sum, avg, min, 
max, last, standard deviation, and many other measures can be handled 
for the stream data cube in the same manner as discussed in this study. 
Regression stream cubes can be computed efficiently as indicated in the 
study of ([12]). The distributed and algebraic measures of prediction 
cubes, as defined in ([9]), in principle, can be computed efficiently in 
the data stream environment. However, it is not clear how to efficiently 
handle holistic measures ([14]) in the stream data cubing environment. 
For example, it is still not clear that how some holistic measures, such 
as quantiles, rank, median, and so on, can be computed efficiently in this 
framework. This issue is left for future research. 

Toward multidimensional online stream mining. This study is on 
multidimensional OLAP stream data analysis. Many data mining tasks 
requires deeper analysis than simple OLAP analysis, such as classifica- 
tion, clustering and frequent pattern analysis. In principle, the general 
framework worked out in this study, including tilted time frame, minimal 
generalized layer and observation layers, as well as partial precomputa- 
tion for powerful online analysis, will be useful for in-depth data mining 
methods. It is an interesting research theme on how to extend this frame- 
work towards online stream data mining. 

Conclusions 
this paper, we have promoted on-line analytical processing of stream 
and proposed a feasible framework for on-line computation of multi- 

dimensional, multi-level stream cube. 
We have proposed a general stream cube architecture and a stream data 

cubing method for on-line analysis of stream data. Our method uses a tilted 
time frame, explores minimal interesting and observation layers, and adopts a 
popular path approach for efficient computation and storage of stream cube 
to facilitate OLAP analysis of stream data. Our performance study shows that 
the method is cost-efficient and is a realistic approach based on the current 
computer technology. Recently, this stream data cubing methodology has been 
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successfully implemented in the MAIDS project at NCSA (National Center 
for Supercomputing Applications) at the University of Illinois, and tested its 
effectiveness using online stream data sets ([lo]). 

Our proposed stream cube architecture shows a promising direction for real- 
ization of on-line, multi-dimensional analysis of data streams. There are a lot 
of issues to be explored further. In particular, it is important to further develop 
data mining methods to take advantage of stream cubes for on-line mining of 
multi-dimensional knowledge in stream data. 
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Abstract Systems for processing continuous monitoring queries over data streams must be 
adaptive because data streams are often bursty and data characteristics may vary 
over time. In this chapter, we focus on one particular type of adaptivity: the ability 
to gracefully degrade performance via "load shedding" (dropping unprocessed 
tuples to reduce system load) when the demands placed on the system cannot 
be met in full given available resources. Focusing on aggregation queries, we 
present algorithms that determine at what points in a query plan should load 
shedding be performed and what amount of load should be shed at each point in 
order to minimize the degree of inaccuracy introduced into query answers. We 
also discuss strategies for load shedding for other types of queries (set-valued 
queries, join queries, and classification queries). 

Keywords: data streams, load shedding, adaptive query processing, sliding windows, auto- 
nomic computing 

One of the main attractions of a streaming mode of data processing - as 
opposed to the more conventional approach for dealing with massive data sets, 



128 DATA STREAMS: MODELS AND ALGORITHMS 

in which data are periodically collected and analyzed in batch mode - is the 
timeliness of the insights that are provided. In many cases, the ability to 
issue continuous queries and receive real-time updates to the query answers 
as new data arrives can be the primary motivation for preferring data stream 
processing technology to alternatives such as data warehousing. For this reason, 
it is important that data stream processing system be able to continue to provide 
timely answers even under difficult conditions, such as when temporary bursts 
in data arrival rates threaten to overwhelm the capabilities of the system. 

Many data stream sources (for example, web site access patterns, transac- 
tions in financial markets, and communication network traffic) are prone to 
dramatic spikes in volume (e.g., spikes in traffic at a corporate web following 
the announcement of a new product or the spikes in traffic experienced by news 
web sites and telephone networks on September 1 1,2001). Because peak load 
during a spike can be orders of magnitude higher than typical loads, fully pro- 
visioning a data stream monitoring system to handle the peak load is generally 
impractical. However, in many monitoring scenarios, it is precisely during 
bursts of high load that the function performed by the monitoring application 
is most critical. Therefore, it is particularly important for systems processing 
continuous monitoring queries over data streams to be able to automatically 
adapt to unanticipated spikes in input data rates that exceed the capacity of the 
system. An overloaded system will be unable to process all of its input data 
and keep up with the rate of data arrival, so loadshedding, i.e., discarding some 
fraction of the unprocessed data, becomes necessary in order for the system to 
continue to provide up-to-date query responses. In this chapter, we consider 
the question of how best to perform load shedding: How many tuples should be 
dropped, and where in the query plan should they be dropped, so that the system 
is able to keep up with the rate of data arrival, while minimizing the degree of 
inaccuracy in the query answers introduced as a result of load shedding? 

The answer to this question often differs depending on the type of queries 
being answered, since different classes of queries have different loss metrics 
for measuring the degradation in answer quality caused by load shedding. In 
the fist part of the chapter, we perform a detailed study of the load shedding 
problem for one particular class of queries, sliding window aggregate queries. 
Afterwards, we consider several other classes of queries (set-valued queries 
with tuple-level utility functions, sliding-window join queries, and classification 
queries), and we briefly discuss load shedding techniques appropriate for each 
query class. 

1. Load Shedding for Aggregation Queries 
The continuous monitoring queries that we consider in this section are sliding 

window aggregate queries, possibly including filters and foreign-key joins with 
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stored relations, over continuous data streams. We restrict out attention to 
this query class, omitting monitoring queries involving joins between multiple 
streams, or non-foreign-key joins between streams and stored relations. 

Overview of Approach In this section, we will describe a technique involving 
the introduction of load shedding operators, or load shedders, at various points 
in the query plan. Each load shedder is parameterized by a sampling rate p. The 
load shedder flips a coin for each tuple that passes through it. With probability p, 
the tuple is passed on to the next operator, and with probability 1 -p, the tuple is 
discarded. To compensate for the lost tuples caused by the introduction of load 
shedders, the aggregate values calculated by the system are scaled appropriately 
to produce unbiased approximate query answers. 

The decisions about where to introduce load shedders and how to set the sam- 
pling rate for each load shedder are based on statistics about the data streams, 
including observed stream arrival rates and operator selectivities. We use statis- 
tical techniques similar to those used in approximate query processing systems 
to make these decisions in such a way as to achieve the best attainable accuracy 
given data input rates. 

1.1 Problem Formulation 
Preliminaries. For our purposes, a continuous data stream S will be de- 
fined as a potentially unbounded sequence of tuples {sl , sz , ss , . . .) that arrive 
over time and must be processed online as they arrive. A sliding window ag- 
gregate is an aggregation function applied over a sliding window of the most 
recently-arrived data stream tuples (for example, a moving average). The aggre- 
gation functions that we consider are SUM and COUNT, though the techniques 
described can be generalized to other functions such as AVG and MEDIAN. 
Sliding windows may be either time-based, meaning that the window consists 
of all tuples that have arrived within some time interval w of the present (e.g., 
the last 4 hours), or tuple-based, meaning that the window consists of the N 
most recently arrived tuples (e.g., the last 10,000 tuples). A filter is a local 
selection condition on tuples from a data stream. 

This class of queries (sliding window aggregate queries) is important and 
useful for many data stream monitoring applications, including network traffic 
engineering, which we will use as an example application domain. Network 
analysts oflen monitor sliding window aggregates covering multiple timescales 
over packet traces from routers, typically filtering based on the internet protocol 
used, source and destination port numbers, and similar considerations. Foreign- 
key joins or semijoins with stored relations may be used in monitoring queries 
to perform filtering based on some auxiliary information that is not stored in 
the data stream itself (e.g., the industry grouping for a security in a financial 
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monitoring application). For our purposes, such joins have the same structure 
and effects as an expensive selection predicate or a user-defined function. 

Most data stream monitoring scenarios involve multiple concurrent continu- 
ous queries. Sharing of common sub-expressions among queries is desirable to 
improve the scalability of the monitoring system. For this reason, it is important 
that a load shedding policy take into account the structure of operator sharing 
among query plans rather than attempting to treat each query as an isolated unit. 

The input to the load shedding problem consists of a set of queries ql , . . . , q, 
over data streams S1, . . . , S,, a set of query operators 01, . . . , Ok, and some 
associated statistics that are described below. The operators are arranged into 
a dataflow diagram (similar to [3]) consisting of a directed acyclic graph with 
m source nodes representing the data streams, n sink nodes representing the 
queries, and k internal nodes representing the query operators. (Please refer to 
Figure 7.1 .) The edges in the graph represent data flow between query operators. 
For each query qi, there is a corresponding path in the data flow diagram from 
some data stream Sj though a set of query operators Oil, Oi2, . . . , Oi, to node 
qi. This path represents the processing necessary to compute the answer to 
query qiy and it is called the query path for query qi. Because we do not 
consider joins between data streams, the data flow diagram can be thought of 
as being composed of a set of trees. The root node of each tree is a data stream 
Sj, and the leaf nodes of the tree are the queries that monitor stream Sj. Let 
T(Sj) denote the tree of operators rooted at stream source Sj. 
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Every operator Oi in the data flow diagram is associated with two parameters: 
its selectivity si and its processing time per tuple ti. The selectivity of an 
operator is defined as the ratio between the number of output tuples produced 
by the operator and the number of input tuples consumed by the operator. The 
processing time per tuple for an operator is defined as the average amount of 
time required by the operator to process each input tuple. The last operator along 
any query path is a windowed aggregate operator. The output of this operator is 
the final answer to the query and therefore not consumed by any other operator, 
so the selectivity of such an operator can be considered to be zero. Each SUM 
aggregate operator Oi is associated with two additional parameters, the mean 
pi and standard deviation ai of the values in the input tuples that are being 
aggregated. The final parameters to the load shedding problem are the rate 
parameters rj ,  one for each data stream Sj. Rate parameter rj represents the 
average rate of tuple arrival on stream Sj, measured in tuples per unit time. 

Estimation of Input Parameters. Although we have described these 
input parameters (selectivity, stream rate, etc.) as known, fixed quantities, in 
reality their exact values will vary over time and cannot be known precisely 
in advance. In the data stream management system STREAM [8], there is a 
Statistics Manager module that estimates the values of these parameters. The 
query operators in STREAM are instrumented to report statistics on the number 
of tuples processed and output by the operator and the total processor time 
devoted to the operator. Based on these statistics, the Statistics Manager can 
estimate the selectivity and processing times of operators as well as the data 
stream arrival rates. During times when statistics gathering is enabled, the 
SUM aggregation operator additionally maintains statistics on the sum and 
sum-of-squares of the aggregate values of tuples that it processes, allowing the 
estimation of the mean and standard deviation of the values of the attribute 
being summed. As stream arrival rate and data characteristics change, the 
appropriate amount of load to shed and the right places to shed it may change 
as well. Therefore, in the STREAM system, estimates for the load shedding 
input parameters are periodically refreshed by the Statistics Manager, and load 
shedding decisions are periodically revisited. 

Accuracy Metric. Let A1, A2, . . . , A, be the answers to queries ql ,q2, . . . , qn 
at some point in time, and let 21, &, . . . , & be the answers produced by the 
data stream monitoring system. If the input rates are high enough that load 
shedding becomes necessary, the data stream monitoring system may not be 
able to produce the correct query answers, i.e., Ai # Ai for some or all queries 
qi. The quality of a load shedding policy can be measured in terms of the devi- 
ation of the estimated answers produced by the system from the actual answers. 
Since the relative error in a query answer is generally more important than the 
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absolute magnitude of the error, the goal of our load shedding policy will be 
to minimize the relative error for each query, defined as E i  = I Ai - Xi 1 / [Ai 1. 
Moreover, as there are multiple queries, we aim to minimize the maximum error 
across all queries, em,, = max15i5n Ei.  

Load Constraint. The purpose of load shedding is to increase the through- 
put of the monitoring system so that the rate at which tuples are processed is 
at least as high as the rate at which new input tuples are arriving on the data 
streams. If this relationship does not hold, then the system will be unable to keep 
up with the arriving data streams, and input buffers and latency of responses 
will grow without bound. We capture this requirement in an equation, which 
we call the load equation, that acts as a constraint on load shedding decisions. 

Before presenting the load equation, we will first introduce some additional 
notation. As mentioned earlier, each operator Oi is part of some tree of oper- 
ators T(Sj). Let Ui denote the set of operators "upstream" of Oi-that is, the 
operators that fall on the path from Sj to Oi in the data flow diagram. If some of 
the operators upstream of Oi are selective, the data input rate seen by operator 
Oi will be less than the data stream rate rj at the stream source since some 
tuples are filtered out before reaching Oi. Furthermore, if load shedders are 
introduced upstream of Oi, they will also reduce the effective input rate seen by 
Oi. Let us define pi as the sampling rate of the load shedder introduced immedi- 
ately before operator Oi and let pi = 1 when no such load shedder exists. Thus 
to measure the time spent in processing operator Oi, we are interested in the 
efective input rate for Oi, which we denote r(Oi) = r8Tc(i)pi nOrEUi szpx. 
(Here src(i) denotes the index of the data stream source for operator Oi, i.e. 
src(i) = j for Oi E T(Sj).) This leads to the load equation: 

EQUATION 1.1 (LOAD EQUATION) Any load shedding policy must select 
sampling rates pi to ensure: 

The leR hand side of Equation 1.1 gives the total amount of time required for 
the system to process the tuples that arrive during one time unit, assuming that 
the overhead introduced by load shedding is negligible. Clearly, this processing 
time can be at most one time unit, or else the system will be unable to keep up 
with the arriving data streams. The assumption that the cost of load shedding is 
small relative to the cost of query operators, and can therefore be safely ignored, 
is borne out by experimental evidence 121. 

Problem Statement. The formal statement of the load shedding problem 
is as follows: Given a dataflow diagram, the parameters si, ti, pi, ~i for each 
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operator Oi, and the rate parameters rj for each data stream Sj, select load 
shedding sampling rates pi to minimize the maximum relative error E,,, = 
maxl<i<, €it subject to the constraint that the load equation, Equation 1.1, 
must be satided. 

1.2 Load Shedding Algorithm 
In this section, we describe our algorithm for determining the locations at 

which load shedding should be performed and setting the sampling rate param- 
eters pi. The algorithm has two steps: 

1 Determine the effective sampling rates for each query that will distribute 
error evenly among all queries. 

2 Determine where in the data flow diagram load shedding should be per- 
formed to achieve the appropriate rates and satisfy the load equation. 

These two steps are described in detail below. 

Allocation of Work Among Queries. Recall that the error metric we 
use to measure the accuracy of a query response is the relative error. It is 
impossible to precisely predict the relative error in query answers that will arise 
from a particular choice of a load shedding policy, because the data values in 
the discarded tuples are unknown. However, if we assume some knowledge 
about the distribution of data values, for example based on previously-seen 
tuples from the data streams, then we can use probabilistic techniques to get 
good estimates of what the relative error will be. There is some variability in 
the relative error, even if the data distribution is known exactly, because the 
approximate answers produced by the system depend on the outcomes of the 
random coin flips made by the load shedders. Therefore, to compare alternative 
load shedding policies, we do the following: for a fixed small constant S (we 
use 0.01), we say that a load shedding policy achieves error E if, for each query 
qi, the relative error resulting from using the policy to estimate the answer to qi 
exceeds E with probability at most S. 

Relating Sampling Rate and Error Suppose the query path for a SUM 
query qi consists of the sequence of operators Oil, Oi2, . . . , Oiz. Consider a 
load shedding policy that introduces load shedders along the query path with 
sampling rates pil, pi2, . . . ,pi,. Let T be a tuple that would pass through all the 
query operators and contribute to the query answer in the absence of any load 
shedders. When load shedders are present, T will contribute to the answer if and 
only if it passes through all the load shedders, which occurs with probability 
Pi = pilpi2 . . . piz. We will refer to Pi as the efective sampling rate for query 
qi - 
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Let Qi denote the set of tuples from the current sliding window that would 
pass all selection conditions and contribute to the query answer in the absence 
of load shedders. Let Ni be the number of tuples in the set Qi. From the 
above discussion, it is clear that in the presence of load shedders, this aggregate 
query will be answered based on a sample of Qi where each element gets 
included independently with probability Pi. For the tuples in the set Qi, let 
vl, 212, . . . , V N ~  denote the values of the attribute being summed, and let Ai be 
their sum. The approximate answer produced by the system will be the sum 
of vi's for the tuples that get included in the sample, scaled by the inverse of 
the effective sampling rate (l/Pi). The following proposition, which follows 
directly from a result due to Hoeffding (Theorem 2 in [6]) ,  gives an upper bound 
on the probability that the relative error exceeds a certain threshold Ei. 

PROPOSITION 1.1 Let XI, X2, . . . , XN be N random variables, such that 
each random variable X j  takes the value vj/P with probability P and the 
value zero otherwise. Let & be the sum of these random variables and let 
A~ = xN j=l vj. q w e  denote by SSi the sum C& v;, then 

PT{& - Ail > elAil) 5 2 exp ( -~P~E~A: / s s~ )  

Thus, for a query qi, to ensure that the probability that the relative error 
exceeds Ei  is at most 6, we must guarantee that 2 exp (-~P,~E:A?/S&) 5 6, 

which occurs when Piei > Ci, where we define Ci = 3 log -. Let- 
-' 

ting the mean and variance of the values ~ 1 , 2 1 2 ,  . . . , V N ~  be denoted by pi = 

~5 3=1 v./Ni 3 and a: = - p i ) 2 / ~ i ,  respectively, the ratio SSi/A: is 
equal to (a: +&/(Nip:). Thus the right-hand side of the preceding inequality 

02+,.'2 reduces to Ci = \/- 2Nicli log 4. 
If we want a load shedding policy to achieve relative error ei, we must 

guarantee that Pi 2 Ci/ei. Thus, to set Pi correctly, we need to estimate Ci. 
Recall that we are given estimates for pi and ai (provided by the Statistics 
Manager) as inputs to the load shedding problem. The value of Ni can be 
calculated from the size of the sliding window, the estimated selectivities of 
the operators in the query path for qi, and (in the case of time-based sliding 
windows) the estimated data stream rate rj. 

The larger the value of Ci, the larger the effective sampling rate Pi needs 
to be to achieve a fixed error E i  with a fixed confidence bound 6. Clearly, Ci 
is larger for queries that are more selective, for queries over smaller sliding 
windows, and for queries where the distribution of values for the attribute being 
summed is more skewed. For a COUNT aggregate, pi = 1 and ai = 0, so only 
the window size and predicate selectivity affect the effective sampling rate. 
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On the Effects of Parameter Estimation Errors Since the values of the pa- 
rameters that affect the effective sampling rate are known only approximately, 
and they are subject to change over time, using the estimated parameter val- 
ues directly to calculate effective sampling rates may result in under-sampling 
for a particular query, causing higher relative error. For example, if the data 
characteristics change so that an attribute that previously had exhibited little 
skew suddenly becomes highly skewed, the relative error for a query which 
aggregates the attribute is likely to be higher than predicted. 

The impact of a mistake in estimating parameters will be more pronounced 
for a query whose Pi is low than for a query with higher Pi. Therefore, for 
applications where rapid changes in data characteristics are of concern, a more 
conservative policy for setting effective sampling rates could be implemented by 
adding a constant "fudge factor" to the estimates for Ci for each query. In effect, 
this would result in resources being distributed among the queries somewhat 
more evenly than would be optimal based on the estimated parameter values. 
Such a modification would misallocate resources somewhat if the estimated 
parameters turn out to be correct, but it would be more forgiving in the case of 
significant errors in the estimates. 

Choosing Target Errors for Queries The objective that we seek to minimize 
is the maximum relative error ei across all queries qi. It is easy to see that the 
optimal solution will achieve the same relative error E for all queries. 

OBSERVATION 1.2 In the optimal solution, the relative error (€3 is equal for 
all queries for which load shedding is performed. 

PROOF: The proof is by contradiction. Suppose that ei < ej for two queries 
qi, qj. Since ei = Ci/Pi < ej, we could reduce Pi to Pi' by introducing a load 
shedder before the final aggregation operator for qi with effective sampling 
rate P,I/Pi so that ei = Ci/P,I = ej. By doing so, we keep the maximum 
relative error unchanged but reduce the processing time, gaining some slack in 
the load equation. This slack can be distributed evenly across all queries by 
increasing all load shedder sampling rates slightly, reducing the relative error 
for all queries. 

For an optimal solution, since the relative errors for all queries are the same, 
the effective sampling rate Pi for each query qi will be proportional to the Ci 
value for that query, since Pi = Ci/ei = Ci/emaz. Therefore, the problem of 
selecting the best load shedding policy reduces to determining the best achiev- 
able e,,, and inserting load shedders such that, for each query qi, the effective 
sampling rate Pi, is equal to Ci/emax. In doing so we must guarantee that 
the modified query plan, after inserting load shedders, should satisfy the load 
equation (Equation 1.1). 
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Placement of Load Shedders. For now, assume that we have guessed the 
right value of em,,, so that we know the exact effective sampling rate Pi for 
each query. (In fact, this assumption is unnecessary, as we will explain below.) 
Then our task is reduced to solving the following problem: Given a dataflow 
diagram along with a set of target eflective sampling rates Pi for each query qi, 
modzfi the diagram by inserting load shedding operators and set their sampling 
rates so that the eflective sampling rate for each query qi is equal to Pi and the 
total processing time is minimized. 

If there is no sharing of operators among queries, it is straightforward to 
see that the optimal solution is to introduce a load shedder with sampling rate 
pi = Pi before the first operator in the query path for each query qi. Introducing 
a load shedder as early in the query path as possible reduces the effective 
input rate for all "downstream" operators and conforms to the general query 
optimization principle of pushing selection conditions down. 

Introducing load shedders and setting their sampling rates is more compli- 
cated when there is sharing among query plans. Suppose that two queries ql and 
q2 share the first portion of their query paths but have different effective sam- 
pling rate targets PI and P2. Since a load shedder placed at the shared beginning 
of the query path will affect the effective sampling rates for both queries, it is 
not immediately clear how to simultaneously achieve both effective sampling 
rate targets in the most efficient manner, though clearly any solution will nec- 
essarily involve the introduction of load shedding at intermediate points in the 
query paths. 

We will define a shared segment in the data flow diagram as follows: Suppose 
we label each operator with the set of all queries that contain the operator in 
their query paths. Then the set of all operators having the same label is a shared 
segment. 

OBSERVATION 1.3 In the optimal solution, load shedding is only performed 
at the start of shared segments. 

This observation is true for the same reason that load shedding should always 
be performed at the beginning of the query plan when no sharing is present: 
The effective sampling rates for all queries will be the same regardless of the 
position of the load shedder on the shared segment, but the total execution time 
will be smallest when the load shedding is performed as early as possible. 

The preceding observation rules out some types of load shedding configura- 
tions, but it is not enough to determine exactly where load shedding should be 
performed. The following simple example will lead us to a further observation 
about the structure of the optimal solution: 

EXAMPLE 7.1 Considerasimple dataflow diagram with 3 operators asshown 
in Figure 7.2. Suppose the query nodes ql and q 2  must have efective sampling 



Figure 7.2. Illustration of Example 7.1 

rates equal to 0.5 and 0.8 respectively. Each operator (A, B, and C) is in its 
own shared segment, so load shedding could potentially be per$ormed before 
any operatol: Imagine a solution that places load shedders before all three 
operators A, B, and C with sampling rates pl, pa, and p3 respectively. Since 
p1p2 = 0.5 andplp3 = 0.8, we know that theratiop2/p3 = 0.510.8 = 0.625 in 
any solution. Consider the following modijication to the solution: eliminate the 
loadshedder before operator C and change the sampling rates for the other two 
load shedders to be pi = PIP3 = 0.8 and pb = p2/p3 = 0.625. This change 
does not afect the efective sampling rates, because pip; = plp2 = 0.5 and 
pi = plp3 = 0.8, but the resultingplan has lower processing time per tuple. 
Efectively, we have pushed down the savings from load shedder p3 to before 
operator A, thereby reducing the efective input rate to operator A while leaving 
all other efective input rates unchanged. 

Let us defke a branch point in a data flow diagram as a point where one 
shared segment ends by splitting into k > 1 new shared segments. We will 
call the shared segment terminating at a branch point the parent segment and 
the Ic shared segments originating at the branch point child segments. We can 
generalize the preceding example as follows: 

OBSERVATION 1.4 Let qmax be the query that has the highest efective sam- 
pling rate among all queries sharing the parent segment of a branch point B. 
In the optimal solution, the child segment of B that lies on the query path for 
qmaz will not contain a load sheddel: All other child segments of B will contain 
a load shedder with sampling rate Pchild/Pmaxt where qchild is deJinedfor each 
child segment as the query with the highest efective sampling rate among the 
queries sharing that child segment. 



Figure 7.3. Illustration of Observation 1.4 

Observation 1.4 is illustrated in Figure 7.3. The intuition underlying this 
observation is that, since all queries sharing the parent segment must shed at 
least a (1 - Pm,,)-fraction of tuples, that portion of the load shedding should 
be performed as early as possible, no later than the beginning of the shared 
segment. The same intuition leads us to a final observation that completes our 
characterization of the optimal load shedding solution. Let us refer to a shared 
segment that originates at a data stream as an initial segment. 

OBSERVATION 1.5 Let q,,, be the query that has the highest efective sam- 
pling rate among all queries sharing an initial segment S. In the optimal 
solution, S will contain a load shedder with sampling rate Pmax. 

The combination of Observations 1.3, 1.4, and 1.5 completely specifies the 
optimal load shedding policy. This policy can be implemented using a simple 
top-down algorithm. If we collapse shared segments in the data flow diagram 
into single edges, the result is a set of trees where the root node for each tree 
is a data stream Sj, the internal nodes are branch points, and the leaf nodes 
are queries. We will refer to the resulting set of trees as the collapsed tree 
representation of the data flow diagram. For any internal node x in the collapsed 
tree representaiton, let P, denote the maximum over all the effective sampling 
rates Pi corresponding to the leaves of the subtree rooted at this node. 

The following definition will be useful in the proof of Theorem 1.7. 

DEFINITION 1.6 Theprejkpathprobability of a node x in the collapsed tree 
representation is dejned as the product of the sampling rates of all the load 
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Algorithm 1 Procedure SetSamplingRate(x, R,) 
if x is a leaf node then 

return 
end if 
Let XI, 22, . . . x k  be the children of x 
fori = 1toIcdo 

if Pxi < R, then 
Shed load with p = Px,/R, on edge (x, xi) 

end if 
SetSamplingRate(xi, PXd) 

end for 

Figure 7.4. Procedure SetSamplingRate(x, R, ) 

shedders on the path from node x to the root of its tree. Ifthere are no load 
shedders between the root and node x, then the prefix path probability of x is 1. 

The pseudocode in Algorithm 7.4 operates over the collapsed tree represen- 
tation to introduce load shedders and assign sampling rates starting with the 
call Set SamplingRate (Sj7 1) for each data stream Sj . 
THEOREM 1.7 Among allpossible choices for theplacement of loadshedders 
and their sampling rates which result in a given set of efective sampling rates 
for the queries, the solution generated by the SetSamplingRate procedure 
has the lowest processing time per tuple. 

PROOF: Note that in each recursive invocation of SetSampling~ate(x, R,), 
the second parameter Rx is equal to the prefix path probability of node x. To 
prove the theorem, we first prove the claim that for each node x other than the 
root, the prefix path probability of x is equal to Px. 

The proof of the claim is by induction on the height of the tree. The base 
case consists of the root node and its children. The claim is trivially true for the 
root node. For a node n that is the child of the root, the top-level invocation of 
SetSamplingRate, with RTOot = 1, places a load shedder with sampling rate 
Pn/&oot = Pn at the beginning of edge (root, n), so the prefix path probability 
of n is equal to P,. 

For the inductive case, consider any node b in the tree which is the child 
of some non-root node a. Assume that the claim holds for node a. When 
SetSamplingRate is called with a as an argument, it places a load shedder 
with sampling rate Pb/Pa at the beginning of edge (a, b). Thus, by the inductive 
hypothesis, the roduct of sampling rates of load shedders fiom the root to node B b equals Pa x 2 = Pb, proving the claim. 
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Thus we guarantee that the prefix path probability of any node is equal to 
the highest effective sampling rate of any query which includes that node in its 
query path. No solution could set a prefix path probability less than this value 
since it would otherwise violate the effective sampling rates for that query. Thus 
the effective input rate of each operator is the minimum that can be achieved 
subject to the constraint that prefix path probabilities at the leaf nodes should 
equal the specified effective sampling rates. This proves the optimality of the 
algorithm. 

Determining the Value of emax An important point to note about the algo- 
rithm is that except for the first load shedder that is introduced just after the 
root node, the sampling rates for all others depend only on the ratios between 
effective sampling rates (each sampling rate is equal to Pi/Pj = Ci/Cj for 
some i, j )  and not on the actual Pi values themselves. As a consequence, it is 
not actually necessary for us to know the value of emax in advance. Instead, we 
can express each effective sampling rate Pi as CiX, where X = 1/~,,, is an un- 
known multiplier. On each query path, there is at most one load shedder whose 
sampling rate depends on A, and therefore the load equation becomes a linear 
function of A. After running Algorithm 7.4, we can easily solve Equation 1.1 
for the resulting configuration to obtain the correct value of X that makes the 
inequality in Equation 1.1 tight. 

Another consequence of the fact that only load shedders on initial segments 
depend on the actual Pi values is that the load shedding structure remains stable 
as the data stream arrival rates rj change. The effective sampling rate Pi for 
each query qi over a given data stream Sj  depends on the rate rj in the same 
way. Therefore, changing rj does not affect the ratio between the Pi values for 
these queries. The only impact that a small change to rj will have is to modify 
the sampling rates for the load shedders on the initial segments. 

When determining emax in situations when the system load is only slightly 
above system capacity, an additional consideration sometimes needs to be taken 
into account: When no load shedding is performed along the query path for a 
given query, the error on that query drops to zero. By contrast, for each query, 
there is a minimum error threshold (Ci) below which no error guarantees based 
on Proposition 1.1 can be given as long as any load shedding is performed 
along the query path. As the effective sampling rate Pi increases, the relative 
error E i  decreases continuously while Pi < 1 then makes a discontinuous jump 
(from €i = Ci to E i  = 0) at Pi = 1. Our algorithm can be easily modified to 
incorporate this discontinuity, as described in the next paragraph. 

In some cases, the value of X that makes the inequality in Equation 1.1 
tight may be greater than l/Cmax, where Cmax is the proportionality constant 
(derived using Proposition 1.1) of the query qmax with maximum target effective 
sampling rate. Such a value of X corresponds to an infeasible target effective 
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sampling rate for query qmax, since Pmaz = CmaxX > 1. It is not meaningful 
to have a load shedder with sampling rate greater than one, so the maximum 
possible effective sampling rate for any query is 1, which is attained when no 
load shedding is performed for that query. To handle this case, we set Pmax = 1 
and re-compute the placement of load shedders using the SetSamplingRate 
procedure (Algorithm 7.4). This re-computation may be need to be performed 
several times-each time forcing an additional query's target sampling rate 
equal to 1-until eventually Pi 5 1 for all queries qi. 

1.3 Extensions 
We briefly discuss how to extend our techniques to incorporate quality of 

services guarantees and a more general class of queries. 

Quality of Service. By taking as our objective the minimization ofthe maxi- 
mum relative error across all queries, we have made the implicit assumption that 
all queries are equally important. In reality, in many monitoring applications 
some queries can be identified as being more critical than others. Our techniques 
can easily be adapted to incorporate varying quality of service requirements for 
different queries, either through the introduction of query weights, or query 
priorities, or both. 

One modification would be to allow users to associate a weight or importance 
wi with each query qi. With weighted queries, the goal of the system is to 
minimize the maximum weighted relative error. When computing the effective 
sampling rate target for the queries, instead of ensuring that Ci/emaX is equal 
for all queries qi, we ensure that Ci/(wiemax) is equal. In other words, instead 
of Pi cc Ci we have Pi cc Ciwi. 

An alternative way of specifying query importance is to assign a discrete 
priority level to each query. Then the goal of the system is to minimize the 
maximum relative error across all queries of the highest priority level. If all 
these queries can be answered exactly, then the system attempts to minimize the 
maximum relative error across queries with the second-highest priority level, 
and so on. 

More General Query Classes. We have discussed the load shedding 
problem in the context of a particular class of data stream monitoring queries, 
aggregation queries over sliding windows. However, the same techniques that 
we have developed can be applied to other classes of queries as well. One 
example is monitoring queries that have the same structure as the ones we have 
studied, except that they have set-valued answers instead of ending with an 
aggregation operator. In the case of set-valued queries, an approximate answer 
consists of a random sample of the tuples in the output set. The metric of 
relative error is not applicable to set-valued queries. Instead, we can measure 
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error as the percentage of tuples from the query answer that are missing in the 
approximate answer. The goal of the system is to minimize the maximum value 
of this quantity across all queries, optionally with query weights or priorities. 
Our algorithm can be made to optimize for this objective by simply setting Ci 
for each query equal to 1. 

Another class of queries that arises in data stream monitoring applications is 
aggregation queries with "group-bys". One can view a group-by query as multi- 
ple queries, one query for each group. However, all these queries share the entire 
query path and thus will have the same effective sampling rate. Consequently, 
the group with maximum relative error will be the one with the maximum Ci 
value. Since our error metric is the maximum relative error among all groups 
across queries, within each group-by query, the group with maximum Ci value 
will be the only group that counts in the design of our solution. Thus, we can 
treat the group with maximum Ci value as the representative group for that 
query. 

Incorporating Load Shedding Overhead. The results we have presented 
are based on the assumption that the cost (in terms of processing time) to 
perform load shedding is small relative to the the cost of query operators. In an 
actual system implementation, even simple query operators like basic selections 
generally have considerable overhead associated with them. A load shedder, 
on the other hand, involves little more than a single call to a random number 
generator and thus can be very efficiently implemented. In empirical tests using 
the STREAM system, we found that the processing time per tuple for a load 
shedding operator was only a small fraction of the total processing time per 
tuple even for a very simple query. 

In some applications, however, the relative cost of load shedding may be 
larger, to the point where ignoring the overhead of load shedding when deciding 
on the placement of load shedders leads to inefficiencies. The same basic 
approach that we have described can be applied in such a context by associating 
a processing cost per tuple with load shedding operators. In this case, the best 
placement of load shedders can be found using dynamic programming [I]. 

2. Load Shedding in Aurora 
Similar to STREAM [8], Aurora [3] is a prototype of a data stream manage- 

ment system that has been designed to deal with a very large numbers of data 
streams. The query network in Aurora is a directed acyclic graph (DAG), with 
sources as data streams and sinks as query output nodes. Internal nodes repre- 
sent one of seven primitive operators that process tuples, and edges represent 
queues that feed into these operators. The Aurora query-specification model 
differs from the one we have described earlier in two important aspects: 
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The query network allows for binary operators that take input from two 
queues, e.g. (windowed) join of streams. Thus, the query network is not 
neccesarily a collection of trees. 

Aurora allows users to specify three types of quality of service (QoS) 
functions that capture the utility of the output to the user: utility as a 
function either of output latency, or of the percentage loss in tuples, or of 
the output value of tuples. 

A paper by Tatbul et al. [9] discusses load shedding techniques used in the 
Aurora system. We highlight the similarities and differences between their ap- 
proach and the one that we have described earlier. The query network structure 
in both systems is very similar, except for the provision for binary operators 
in Aurora. This leads to very similar equations for computing the load on the 
system, taking into the account the rates for the input streams, selectivity of 
operators and the time required to process each tuple by different operators. 
Both approaches use statistics gathered in the near past to estimate these quan- 
tities. In case of Aurora, the input rate into a binary operator is simply the sum 
of input rates of the individual input queues. The load equation is periodically 
computed to determine if the system is overloaded or not and whether we need 
to shed additional load or reverse any previously-introduced load shedding. 
Load shedding solutions by both approaches employ the push load shedding 
upstream mantra by virtue of which load shedders are always placed at the 
beginning of a shared segment. 

The technique that we have described earlier focuses on the class of sliding- 
window aggregation queries, where the output at any instant is a single numeric 
value. The aim was to minimize the maximum (weighted) relative error for all 
queries. In contrast, the Aurora load-shedding paper focuses on set-valued (non- 
aggregate) queries. One could define different metrics when load-shedding in 
the context of set-valued queries. We have already described one such simple 
metric, namely the fraction of tuples lost for each query. The provision to be 
able to specify QoS functions leads to an interesting metric in the context of 
the Aurora system: minimize the loss in utility due to load shedding. The QoS 
functions that relate output value and utility let users specify relative importance 
of tuples as identified by their attribute values. This leads to a new type of load 
shedding operator, one that filters and drops tuples based on their value, as 
opposed to randomly dropping a fixed fraction of tuples. These are referred to 
as semantic load shedders. The load shedding algorithms in Aurora follow a 
greedy approach of introducing load shedders in the query plan that maximize 
the gain (amount of load reduced) and minimize the loss in utility as measured 
by QoS fuctions. For every potential location for a load shedder, a losslgain 
ratio is computed which is the ratio of computing cycles that will be saved 
for all downstream operators to the loss in utility of all downstream queries, 
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if we drop a fixed fraction of tuples at this location. In case of semantic load 
shedders, filters are introduced that first shed tuples with the least useful values. 
A plan that introduces drops at different locations along with amount of tuples 
dropped is called a Load Shedding Road Map (LSRM). A set of LSRMs is 
precomputed based on current statistics and at run-time the system picks the 
appropriate LSRM based on the current load on the system. 

3. Load Shedding for Sliding Window Joins 
Queries that involve joins between two or more data streams present an 

interesting challenge for load shedding because of the complex interactions 
between load shedding decisions on the streams being joined. Joins between 
data streams are typically sliding window joins. A sliding window join with 
window size w introduces an implicit join predicate that restricts the difference 
between the timestamps of two joining tuples to be at most w. The implicit 
time-based predicate is in addition to the ordinary join predicate. 

Kang, Naughton, and Viglas [7] study load shedding for sliding window join 
queries with the objective of maximizing the number of output tuples that are 
produced. They restrict their attention to queries consisting of a single sliding- 
window join operator and consider the question of how best to allocate resources 
between the two streams that are involved in a join. Their conclusion is that the 
maximum rate of output tuple production is achieved when the input rates of 
the two data streams being joined, adjusted for the effects of load shedding, are 
equal. In other words, if stream S1 arrives at rate rl and stream S2 arrives at 
rate 7-2, and load shedders are placed on each stream upstream of the join, then 
the sampling rate of the load shedder on stream Si should be proportional to 
l /ri ,  with the constant of proportionality chosen such that the system is exactly 
able to keep up with the data arrival rates. 

The paper by Das, Gehrke and Riedwald [5] also addresses the same problem, 
namely maximizing the join size in the context of load shedding for queries 
containing a single sliding window join. Additionally, they introduce a metric 
called the Archive-metric (ArM) that assumes that any tuples that are load-shed 
by the system can be archived to allow for computing the exact answer at a 
later time when the load on the system is less. The ArM metric measures the 
amount of work that will need to be done at a later time to compute the exact 
answer then. They also introduce new models, inspired by different application 
scenarios such as sensor networks, where they distinguish between the cases 
when the system is bounded in terms of its CPU speed versus when it is bounded 
by memory. In the latter case, the goal is to bound the size of the join state 
measured in terms of the number of tuples stored for join processing. 

The Das et al. paper mainly differs from the Kang et al. paper in that it allows 
for semantic load shedding as opposed to just random load shedding. The ability 
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to drop tuples based on their join attribute value leads to interesting problems. 
The one that is the focus of the paper arises from the bounded memory model. 
In this case, the problem translates to keeping M tuples at all times so as to 
maximize the join size, assuming that all incoming tuples are processed and 
joined with the partner tuples from other stream that are stored at that time 
as part of the M tuples. In the static case, when the streams are not really 
streams but relations, they provide an optimal dynamic programming solution 
for binary joins and show that for an m-relation join, they show that the static 
problem is NP-hard. For the offline case of join between two streams, where 
the arrival order of tuples on both streams is assumed to be known, they provide 
a polynomial-time (though impractical) solution that is based on reducing the 
problem to a max-flow computation. They also provide two heuristic solutions 
that can be implemented in a real system. 

4. Load Shedding for Classification Queries 
Loadstar [4] is a system for executing classification queries over data streams. 

Data elements arrive on multiple data streams, and the system examines each 
data item as it arrives and attempts to assign it to one of a finite set of classes 
using a data mining algorithm. An example would be monitoring images from 
multiple security cameras and attempting to determine which person (if any) is 
displayed in each image. If the data arrival rates on the streams are too high 
for the system to keep up, then the system must discard certain data elements 
unexamined, but it must nonetheless provide a predicted classification for the 
discarded elements. The Loadstar system is designed to deal with cases where 
only a small fraction of the data elements can actually be examined, because 
examining a data element requires expensive feature extraction steps. 

The designers of Loadstar introduce two main ideas that are used for load 
shedding in this context: 

1 A quality of decision metric can be used to quantify the expected degra- 
dation in classification accuracy from failing to examine a data item. 
In general the quality of decision function will be different for different 
streams. (E.g., examining an image from a security camera in a poorly-lit 
or low-traffic area may not yield much improvement over always guess- 
ing "no person shown", whereas analyzing images from other cameras 
may allow them to be classfied with high accuracy.) 

2 The features used in classification often exhibit a high degree of temporal 
correlation. Thus, if a data element from a particular stream has been 
examined in the recent past, it may be a reasonable assumption that future 
(unexamined) data elements have similar attribute values. As time passes, 
uncertainty about the attribute values increases. 
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The load shedding strategy used in Loadstar makes use of these two ideas to 
decide which data elements should be examined. Loadstar uses a quality of 
decision metric based on Bayesian decision theory and learns a Markov model 
for each stream to model the rate of dispersion of attribute values over time. 
By combining these two factors, the Loadstar system is able to achieve better 
classification accuracy than the naive approach that sheds an equal fraction of 
load from each data stream. 

5. Summary 
It is important for computer systems to be able to adapt to changes in their 

operating environments. This is particularly true of systems for monitoring con- 
tinuous data streams, which are often prone to unpredictable changes in data 
arrival rates and data characteristics. We have described a framework for one 
type of adaptive data stream processing, namely graceful performance degra- 
dation via load shedding in response to excessive system loads. In the context 
of data stream aggregation queries, we formalized load shedding as an opti- 
mization problem with the objective of minimizing query inaccuracy within the 
limits imposed by resource constraints. Our solution to the load shedding prob- 
lem uses probabilistic bounds to determine the sensitivity of different queries 
to load shedding in order to perform load shedding where it will have minimum 
adverse impact on the accuracy of query answers. Different query classes have 
different measurements of answer quality, and thus require different techniques 
for load shedding; we described three additional query classes and summarized 
load shedding approaches for each. 
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Abstract The sliding-window model of computation is motivated by the assumption that, 
in certain data-stream processing applications, recent data is more useful and 
pertinent than older data. In such cases, we would like to answer questions about 
the data only over the last N most recent data elements (N is a parameter). We 
formalize this model of computation and answer questions about how much space 
and computation time is required to solve certain problems under the sliding- 
window model. 

Keywords: sliding-window, exponential histograms, space lower bounds 

Sliding-Window Model: Motivation 
In this chapter we present some results related to small space computation 

over sliding windows in the data-stream model. Most research in the data- 
stream model (e.g. , see [I, 10, 15, 1 1, 13, 14, 19]), including results presented 
in some of the other chapters, assume that all data elements seen so far in 
the stream are equally important and synopses, statistics or models that are 
built should reflect the entire data set. However, for many applications this 

*Material in this chapter also appears in Data Stream Management: Processing High-speed Data 
Streams, edited by Minos Garofolakis, Johannes Gehrhz and Rajeev Rastogi, published by Springer- Verlag. 
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assumption is not true, particularly those that ascribe more importance to recent 
data items. One way to discount old data items and only consider recent ones 
for analysis is the sliding-window model: Data elements arrive at every instant; 
each data element expires after exactly N time steps; and, the portion of data 
that is relevant to gathering statistics or answering queries is the set of last N 
elements to arrive. The sliding window refers to the window of active data 
elements at a given time instant and window size refers to N .  

0.1 Motivation and Road Map 
Our aim is to develop algorithms for maintaining statistics and models that 

use space sublinear in the window size N .  The following example motivates 
why we may not be ready to tolerate memory usage that is linear in the size 
of the window. Consider the following network-traffic engineering scenario: a 
high speed router working at 40 gigabits per second line speed. For every packet 
that flows through this router we do a prefix match to check if it originates from 
the stanf ord . edu domain. At every instant, we would like to know how many 
packets, of the last 10l0 packets, belonged to the stanf ord. edu domain. The 
above question can be rephrased as the following simple problem: 

PROBLEM 0.1 (BASICCOUNTING) Given a stream of data elements, con- 
sisting of 0's and 1 's, maintain at every time instant the count of the number of 
1 's in the last N elements. 

A data element equals one if it corresponds to a packet from the st anf ord . edu 
domain and is zero otherwise. A trivial solution1 exists for this problem that 
requires N bits of space. However, in such a scenario as the high-speed router, 
where on-chip memory is expensive and limited, and particularly when we 
would like to ask multiple (thousands) such continuous queries, it is prohibitive 
to use even N = 10l0 (window size) bits of memory for each query. Unfortu- 
nately, it is easy to see that the trivial solution is the best we can do in terms of 
memory usage, unless we are ready to settle for approximate answers, i.e. an 
exact solution to BASICCOUNTING requires Q ( N )  bits of memory. We will 
present a solution to the problem that uses no more than o($ log2 N )  bits of 
memory (i.e., 0($ log N )  words of memory) and provides an answer at each 
instant that is accurate within a factor of 1 f e. Thus, for e = 0.1 (1 0% accuracy) 
our solution will use about 300 words of memory for a window size of 10l0. 

Given our concern that derives from working with limited space, it is natural 
to ask "Is this the best we can do with respect with memory utilization?" We 
answer this question by demonstrating a matching space lower bound, i.e. we 
show that any approximation algorithm (deterministic or randomized) for BA- 

'Maintain a FIFO queue and update counter. 
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SICCOUNTING with relative error E must use o($ log2 N) bits of memory. The 
lower bound proves that the above mentioned algorithm is optimal, to within 
constant factors, in terms of memory usage. 

Besides maintaining simple statistics like a bit count, as in BASICCOUNT- 
ING, there are various applications where we would like to maintain more 
complex statistics. Consider the following motivating example: 

A fundamental operation in database systems is a join between two or more 
relations. Analogously, one can defme a join between multiple streams, which 
is primarily useful for correlating events across multiple data sources. How- 
ever, since the input streams are unbounded, producing join results requires 
unbounded memory. Moreover, in most cases, we are only interested in those 
join results where the joining tuples exhibit temporal locality. Consequently, 
in most data-stream applications, a relevant notion of joins that is often em- 
ployed is sliding-window joins, where tuples from each stream only join with 
tuples that belong to a sliding window over the other stream. The semantics 
of such a join are clear to the user and also such joins can be processed in a 
non-blocking manner using limited memory. As a result, sliding-window joins 
are quite popular in most stream applications. 

In order to improve join processing, database systems maintain "join statis- 
tics" for the relations participating in the join. Similarly, in order to efficiently 
process sliding-window joins, we would like to maintain statistics over the slid- 
ing windows, for streams participating in the join. Besides being useful for the 
exact computation of sliding-window joins, such statistics could also be used 
to approximate them. Sliding-window join approximations have been studied 
by Das, Gehrke and Riedwald [6] and Kang, Naughton and Viglas [16]. This 
further motivates the need to maintain various statistics over sliding windows, 
using small space and update time. 

This chapter presents a general technique, called the Exponential Histogram 
(EH) technique, that can be used to solve a wide variety of problems in the 
sliding-window model; typically problems that require us to maintain statistics. 
We will showcase this technique through solutions to two problems: the BAS- 
ICCOUNTING problem above and the SUM problem that we will defme shortly. 
However, our aim is not to solely present solutions to these problems, rather to 
explain the EH technique itself, such that the reader can appropriately modify 
it to solve more complex problems that may arise in various applications. Al- 
ready, the technique has been applied to various other problems, of which we 
will present a summary in Section 4. 

The road map for this chapter is as follows: After presenting an algorithm 
for the BASICCOUNTING problem and the associated space lower bound in 
sections 1 and 2 respectively, we present a modified version of the algorithm 
in Section 3 that solves the following generalization of the BASICCOUNTING 
problem: 
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PROBLEM 0.2  ( S U M )  Given a stream of data elements that are positive in- 
tegers in the range [0 . . . R], maintain at every time instant the sum of the last 
N elements. 

A summary ofother results in the sliding-window model is given in Section 4, 
before concluding in Section 8.1 

1. A Solution to the BASICCOUNTING Problem 
It is instructive to observe why naive schemes do not suffice for producing 

approximate answers with a low memory requirement. For instance, it is natural 
to consider random sampling as a solution technique for solving the problem. 
However, maintaining a uniform random sample of the window elements will 
result in poor accuracy in the case where the 1's are relatively sparse. 

Another approach is to maintain histograms. While the algorithm that we 
present follows this approach, it is important to note why previously known 
histogram techniques from databases are not effective for this problem. A 
histogram technique is characterized by the policy used to maintain the bucket 
boundaries. We would like to build time-based histograms in which every 
bucket summarizes a contiguous time interval and stores the number of 1's 
that arrived in that interval. As with all histogram techniques, when a query is 
presented we may have to interpolate in some bucket to estimate the answer, 
because some of the bucket's elements may have expired. Let us consider some 
schemes of bucketizing and see why they will not work. The first scheme 
that we consider is that of dividing into k equi-width (width of time interval) 
buckets. The problem is that the distribution of 1's in the buckets may be 
nonuniform. We will incur large error when the interpolation takes place in 
buckets with a majority of the 1's. This observation suggests another scheme 
where we use buckets of nonuniform width, so as to ensure that each bucket 
has a near-uniform number of 1's. The problem is that total number of 1's in 
the sliding window could change dramatically with time, and current buckets 
may turn out to have more or less than their fair shares of 1's as the window 
slides forward. The solution we present is a form of histogram that avoids these 
problems by using a set of well-structured and nonuniform bucket sizes. It 
is called the Exponential Histogram (EH) for reasons that will be clear later. 
Before getting into the details of the solution we introduce some notation. 

We follow the conventions illustrated in Figure 8.1. In particular, we assume 
that new data elements are coming from the right and the elements at the left 
are ones already seen. Note that each data element has an arrival time which 
increments by one at each arrival, with the leftmost element considered to have 
arrived at time 1. But, in addition, we employ the notion of a timestamp which 
corresponds to the position of an active data element in the current window. 
We timestamp the active data elements from right to left, with the most recent 
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element being at position 1. Clearly, the timestamps change with every new 
arrival and we do not wish to make explicit updates. A simple solution is to 
record the arrival times in a wraparound counter of log N bits and then the 
timestamp can be extracted by comparison with counter value of the current 
arrival. As mentioned earlier, we concentrate on the 1's in the data stream. 
When we refer to the L-th 1, we mean the L-th most recent 1 encountered in the 
data stream. 

Increasing time - 
Timestamps 7 6 5 . . . . .  1 

Arrival time 41 42 43 44 45 . . . . . 49 50 . . . 

Elements . . .  0 1 1  1 0  0 0 1 0  1 0  0 1 0  1 I . . .  
- 

Window of active elements 

f--- 

&-rent time instance Increasing ordering of data elements, 
histogram buckets, active 1's 

Figure 8. I .  Sliding window model notation 

For an illustration of this notation, consider the situation presented in Fig- 
ure 8.1. The current time instant is 49 and the most recent arrival is a zero. The 
element with arrival time 48 is the most recent 1 and has timestamp 2 since it is 
the second most recent arrival in the current window. The element with arrival 
time 44 is the second most recent 1 and has timestamp 6. 

We will maintain histograms for the active 1's in the data stream. For every 
bucket in the histogram, we keep the timestamp of the most recent 1 (called 
timestamp for the bucket), and the number of 1's (called bucket size). For 
example, in our figure, a bucket with timestamp 2 and size 2 represents a bucket 
that contains the two most recent 1's with timestamps 2 and 6.  Note that 
timestamp of a bucket increases as new elements arrive. When the timestamp 
of a bucket expires (reaches N + I), we are no longer interested in data elements 
contained in it, so we drop that bucket and reclaim its memory. If a bucket is still 
active, we are guaranteed that it contains at least a single 1 that has not expired. 
Thus, at any instant there is at most one bucket (the last bucket) containing 
1's that may have expired. At any time instant we may produce an estimate 
of the number of active 1's as follows. For all but the last bucket, we add the 
number of 1's that are in them. For the last bucket, let C be the count of the 
number of 1's in that bucket. The actual number of active 1's in this bucket 
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could be anywhere between 1 and C, so we estimate it to be C/2. We obtain 
the following: 

FACT 1.1 The absolute error in our estimate is at most C/2, where C is the 
size of the last bucket. 

Note that, for this approach, the window size does not have to be fixed a-priori 
at N. Given a window size S (S 5 N), we do the same thing as before except 
that the last bucket is the bucket with the largest timestamp less than S. 

1.1 The Approximation Scheme 
We now define the Exponential Histograms and present a technique to main- 

tain them, so as to guarantee count estimates with relative error at most E, for 
any E > 0. Define k = [$I, and assume that 5 is an integer; if g is not an 

integer we can replace g by 121 without affecting the basic results. 
As per Fact 1 .I, the absolute error in the estimate is C/2, where C is the 

size of the last bucket. Let the buckets be numbered from right to left with the 
most recent bucket being numbered 1. Let m denote the number of buckets and 
Ci denote the size of the i-th bucket. We know that the true count is at least 
1 + xEl1 Ci, since the last bucket contains at least one unexpired 1 and the 
remaining buckets contribute exactly their size to total count. Thus, the relative 
estimation error is at most (Cm/2)/(1 + ~ z ; ~  Ci). We will ensure that the 
relative error is at most l / k  by maintaining the following invariant: 

INVARIANT 1.2 At all times, the bucket sizes C1, . . . , Cm are such that: For 
all j 5 m, we have Cj/(2(1 + xj2 Ci) 5 i). 

Let N' < N be the number of 1's that are active at any instant. Then the 
bucket sizes must satisfy CEl Ci 2 N'. Our goal is to satisfy this property 
and Invariant 1.2 with as few buckets as possible. In order to achieve this goal 
we maintain buckets with exponentially increasing sizes so as to satisfy the 
following second invariant. 

INVARIANT 1.3 At all times the bucket sizes are nondecreasing, i.e., C1 5 
C2 I. . . 5 Cm-l 5 C,. Furthec bucket sizes are constrained to the follow- 
ing: {I, 2,4,. . . , 2m'}, for some m' < m and m' 5 log ? + 1. For every 

bucket size other than the size of thefirst and last bucket, there are at most + 1 
and at least $ buckets of that size. For the size of thefirst bucket, which is equal 
to one, there are at most k + 1 and at least k buckets of that size. There are at 
most g buckets with size equal to the size of the last bucket. 

Let Cj = 2"' (r > 0) be the size of the j-th bucket. If the size of the last 
bucket is 1 then there is no error in estimation since there is only data element 
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in that bucket for which we know the timestamp exactly. If Invariant 1.3 is 
satisfied, then we are guaranteed that there are at least $ buckets each of sizes 
2,4,. . . ,2'-' and at least tk buckets of size 1, which have indexes less than 
j .  Consequently, Cj < $(I + ~~~~ Ci). It follows that if Invariant 1.3 
is satisfied then Invariant 1.2 is automatically satisfied, at least with respect 
to buckets that have sizes greater than 1. If we maintain Invariant 1.3, it is 
easy to see that to cover all the active l's, we would require no more than 

m 5 (4 + l ) ( l o g ( y )  + 2) buckets. Associated with each bucket is its size 
and a timestamp. The bucket size takes at most log N values, and hence we can 
maintain them using log log N bits. Since a timestamp requires log N bits, the 
total memory requirement of each bucket is log N + log log N bits. Therefore, 
the total memory requirement (in bits) for an EH is o($ log2 N). It is implied 
that by maintaining Invariant 1.3, we are guaranteed the desired relative error 
and memory bounds. 

The query time for EH can be made O(1) by maintaining two counters, one 
for the size of the last bucket (LAST) and one for the sum of the sizes of all 
buckets (TOTAL). The estimate itself is TOTAL minus half of LAST. Both 
counters can be updated in O(1) time for every data element. See the box 
below for a detailed description of the update algorithm. 

Algorithm (Insert): 

1 When a new data element arrives, calculate the new expiry time. If the timestamp of the 
last bucket indicates expiry, delete that bucket and update the counter LAST containing 
the size of the last bucket and the counter TOTAL containing the total size of the buckets. 

2 If the new data element is 0 ignore it; else, create a new bucket with size 1 and the current 
timestamp, and increment the counter TOTAL. 

3 Traverse the list of buckets in order of increasing sizes. If there are $ + 2 buckets of 
the same size ( k  + 2 buckets if the bucket size equals I), merge the oldest two of these 
buckets into a single bucket of double the size. (A merger of buckets of size 2T may 
cause the number of buckets of size 2"+' to exceed $ + 1, leading to a cascade of such 
mergers.) Update the counter LAST if the last bucket is the result of a new merger. 

EXAMPLE 8.1 We illustrate the execution of the algorithm for I0 steps, where 
at each step the new data element is 1. The numbers indicate the bucket sizes 
from 1eJ to right, and we assume that $ = 1. 

32, 32, 16, 8, 8, 4, 2, 1,l 
32, 32, 16, 8, 8, 4, 4, 2, 1, 1, 1 (new 1 arrived) 
32, 32, 16, 8, 8, 4, 4, 2, 1, 1, 1 ,  1 (new 1 arrived) 
32, 32, 16, 8, 8, 4, 4, 2, 2, 1 ,  1 (merged the older 1's)  
32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1, 1 (new 1 arrived) 
32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1, 1, 1 (new 1 arrived) 
32, 32, 16, 8, 8, 4, 4, 2, 2, 2, 1, 1 (merged the older 1's)  
32, 32, 16, 8, 8, 4, 4, 4, 2, 1, 1 (merged the older 2 's )  
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32, 32, 16, 8, 8, 8, 4, 2, 1, 1 (merged the older 4's) 
32. 32, 16, 16, 8, 4, 2, 1. 1 (merged the older 8's) 

Merging two buckets corresponds to creating a new bucket whose size is 
equal to the sum of the sizes of the two buckets and whose timestamp is the 
timestamp of the more recent of the two buckets, i.e. the timestamp of the 
bucket that is to the right. A merger requires O(1) time. Moreover, while 
cascading may require @(log y ) mergers upon the arrival of a single new 
element, a simple argument, presented in the next proof, allows us to argue 
that the amortized cost of mergers is O(1) per new data element. It is easy to 
see that the above algorithm maintains Invariant 1.3. We obtain the following 
theorem: 

THEOREM 1.4 The EH algorithm maintains a data structure that gives an 
estimate for the B A S I C C O U N T I N G ~ ~ O ~ ~ ~ ~  with relative error at most E using 
at most (5 + 1) ( l o g ( y )  + 2 )  buckets, where k = The memory requirement 

is log N + log log N bits per bucket. The arrival of each new element can be 
processed in O(1) amortized time and O(1og N)  worst-case time. At each time 
instant, the data structure provides a count estimate in O(1) time. 

PROOF: The EH algorithm above, by its very design, maintains Invariant 1.3. 
As noted earlier, an algorithm that maintains Invariant 1.3, requires no more 
than (5 + 1) (log(?) + 2) buckets to cover all the active 1's. Furthermore, the 
invariant also guarantees that our estimation procedure has a relative error no 
more than l /k  5 E .  

Each bucket maintains a timestamp and the size for that bucket. Since we 
maintain timestamps using wraparound arrival times, they require no more than 
log N bits of memory. As per Invariant 1.3, bucket sizes can take only one of the 
log y + 1 unique values, and can be represented using log log N bits. Thus, 
the total memory requirement of each bucket is no more than log N + log log N 
bits. 

On the arrival of a new element, we may perform a cascading merge of 
buckets, that takes time proportional to the number of buckets. Since there are 
O(1og N) buckets, this gives a worst case update time of O(1og N). Whenever 
two buckets are merged, the size of the merged bucket is double the size of 
those that are merged. The cost of the merging can be amortized among all the 
1's that fall in the merged bucket. Thus, an element that belongs to a bucket 
of size 2p, pays an amortized cost 1 + 112 + 114 + . . + 1/2p 5 2. This is 
because, whenever it gets charged, the size of the bucket it belongs to doubles 
and consequently the charge it incurs halves. Thus, we get that the amortized 
cost of merging buckets is O(1) per new element, in fact O(1) per new element 
that has value 1. 
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We maintain counters TOTAL and LAST, which can be updated in O(1) time 
for each new element, and which enable us to give a count estimate in O(1) 
time whenever a query is asked. 

If instead of maintaining a timestamp for every bucket, we maintain a times- 
tamp for the most recent bucket and maintain the difference between the times- 
tamps for the successive buckets then we can reduce the total memory require- 
ment to 0 ( k  log2 ;). 

2. Space Lower Bound for BASICCOUNTING Problem 
We provide a lower bound which verifies that the algorithms is optimal 

in its memory requirement. We start with a deterministic lower bound of 
Q ( k  log2 f ). We omit proofs for lack of space, and refer the reader to [8]. 

THEOREM 2.1 Any deterministic algorithm thatprovides an estimate for the 
BASICCOUNTING problem at every time instant with relative error less than 

for some integer k < 4 a  requires at least A log2 f bits of memory. 

The proof argument goes as follows: At any time instant, the space utilized by 
any algorithm, is used to summarize the contents of the current active window. 
For a window of size N,  we can show that there are a large number of possible 
input instances, i.e. arrangements of 0's and 1's' such that any deterministic 
algorithm which provides estimates with small relative error (i.e. less than i )  
has to differentiate between every pair of these arrangements. The number of 
memory bits required by such an algorithm must therefore exceed the logarithm 
of the number of arrangements. The above argument is formalized by the 
following lemma. 

LEMMA 2.2 For k/4 < B < N, there exist L = (L,4) 'log g1 arrangements 

of 0's and 1's of length N such that any deterministic algorithm for BASIC- 
COUNTING with relative error less than must dzferentiate between any two 
of the arrangements. 

To prove Theorem 2.1, observe that if we choose B = in the lemma 
above then log L > A log2 f. While the lower bound above is for a de- 
terministic algorithm, a standard technique for establishing lower bounds for 
randomized algorithms, called the minimax principle [18], lets us extend this 
lower bound on the space complexity to randomized algorithms. 

As a reminder, a Las Vegas algorithm is a randomized algorithm that always 
produces the correct answer, although the running time or space requirement 
of the algorithm may vary with the different random choices that the algorithm 
makes. On the other hand, a Monte Carlo algorithm is a randomized algorithm 
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that sometimes produces an incorrect solution. We obtain the following lower 
bounds for these two classes of algorithms. 

THEOREM 2.3 Any randomized Las Vegas algorithm for BASICCOUNTING 
with relative error less than $,for some integer k 5 4 n ,  requires an expected 

memory of at least log2 g bits. 

THEOREM 2.4 Any randomized Monte Carlo algorithm for BASICCOUNT- 
ING problem with relative error less than $,for some integer k 5 4 0 ,  with 

probability at least 1 - 6 for 6 < i) requires an expected memory of at least 

&, log2 g + 4 log(1 - 26) bits. 

3. Beyond 0's and 1's 

The BASICCOUNTING problem, discussed in the last two sections, is one 
of the basic operations that one can define over sliding windows. While the 
problem in its original form has various applications, it is natural to ask "What 
are the other problems, in the sliding-window model, that can be solved using 
small space and small update time?". For instance, instead of the data elements 
being binary values, namely 0 and 1, what if they were positive integers in the 
range [O . . . R] ? Could we efficiently maintain the sum of these numbers in the 
sliding-window model? We have already defmed this problem, in Section 8, as 
the SUM problem. 

We will now present a modification of the algorithm from Section 1, that 
solves the SUM problem. In doing so, we intend to highlight the characteristic 
elements of the solution technique, so that readers may find it easy to adapt 
the technique to other problems. Already, the underlying technique has been 
successfully applied to many problems, some of which will be listed in the 
following section. 

One way to solve the SUM problem would be to maintain separately a sliding 
window sum for each of the log R bit positions using an EH from Section 1.1. 
As before, let k = [a]. The memory requirement for this approach would be 
O(k log2 N log R) bits. We will present a more direct approach that uses less 
memory. In the process we demonstrate how the EH technique introduced in 
Section 1 can be generalized to solving a bigger class of problems. 

Typically, a problem in the sliding-window model requires us to maintain a 
function f defined over the elements in the sliding window. Let f (B) denote 
the function value restricted to the elements in a bucket B. For example, in 
case of the SUM problem, the function f equals the sum of the positive integers 
that fall inside the sliding-window. In case of BASIC COUNTING the function 
f is simply the number of 1's that fall inside the sliding-window. We note the 
following central ingredients of the EH technique from Section 1 and adapt 
them for the SUM problem : 
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1 Size of a Bucket: The size of each bucket is defined as the value of the 
function f that we are estimating (over the sliding window), restricted to 
that bucket By i.e., f (B). In the earlier case size was simply the count of 
1's falling inside the bucket. For SUM, we define size analogously as the 
sum of integers falling inside the bucket. 

2 Procedure to Merge Buckets or Combination Rule: Whenever the 
algorithm decides to merge two adjacent buckets, a new bucket is created 
with timestamp equal to that of the newer bucket or the bucket to the right. 
The size of this new bucket is computed using the sizes of the individual 
buckets (i.e., , using f (B)'s for the buckets that are merged) and any 
additional information that may be stored with the  bucket^.^ Clearly, for 
the problem of maintaining the sum of data elements, which are either 
0's and 1's or positive integers, no additional information is required. By 
definition, the size of the new merged bucket is simply the sum of the 
sizes of buckets being merged . 

3 Estimation: Whenever a query is asked, we need to estimate the answer 
at that moment based on the sizes of all the buckets and any additional 
information that we may have kept. In order to estimate the answer, we 
may be required to "interpolate" over the last bucket that is part inside 
and part outside the sliding window, i.e., the "straddling" bucket. 
Typically, this is done by computing the function value f over all buckets 
other than the last bucket. In order to do this, we use the same procedure 
as in the Merge step. To this value we may add the interpolated value of 
the function f from the last bucket. 

Again, for the problem of maintaining the sum of positive integers this 
task is relatively straightforward. We simply add up the sizes of all the 
buckets that are completely inside the sliding window. To this we add the 
"interpolated" value from the last bucket, which is simply half the size 
of the last bucket. 

4 Deleting the Oldest Bucket: In order to reclaim memory, the algorithm 
deletes the oldest bucket when its timestamp reaches N + 1. This step is 
same irrespective of the h c t i o n  f we are estimating. 

The technique differs for different problems in the particulars of how the 
steps above are executed and the rules for when to merge old buckets and 

'%ere are problems for which just knowing the sizes of the buckets that are merged is not sufficient to 
compute the size of the new merged bucket. For example, if the function f is the variance of numbers, 
in addition to knowing the variance of the buckets that are merged, we also need to know the number of 
elements in each bucket and mean value of the elements from each bucket, in order to compute the variance 
for the merged bucket. See [4] for details. 
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create new ones, as new data elements get inserted. The goal is to maintain 
as few buckets as possible, i.e., merge buckets whenever possible, while at the 
same time making sure that the error due to the estimation procedure, which 
interpolates for the last bucket, is bounded. Typically, this goal is achieved by 
maintaining that the bucket sizes grow exponentially from right to left (new 
to old) and hence the name Exponential Histograms (EH). It is shown in [8] 
that the technique can be used to estimate a general class of functions f ,  called 
weakly-additive functions, over sliding windows. In the following section, we 
list different problems over sliding windows, that can be solved using the EH 
technique. 

(cum1 window, size N) 

Bm A Bm-!, - i s -  9 - 
Figure 8.2. An illustration of an Exponential Histogram (EH). 

. . 

We need some more notation to demonstrate the EH technique for the SUM 
problem. Let the buckets in the histogram be numbered B1, B2, . . . , Bmy start- 
ing from most recent (B1) to oldest (B,); further, t l ,  t2, . . . , t, denote the 
bucket timestamps. See Figure 8.2 for an illustration. In addition to the buckets 
maintained by the algorithm, we define another set of su$k buckets, denoted 
B1*, . . . , B p ,  that represent suffixes of the data stream. Bucket Bi* represents 
all elements in the data stream that arrived after the elements of bucket Bi, that 
is, Bi* = U:=: Bl. We do not explicitly maintain the suffix buckets. Let Si 
denote the size of bucket Bi. Similarly, let Si* denote the size of the suffix 
bucket Bi*. Note, for the Sum problem Si* = Sl. Let Bi,i-1 denote 
the bucket that would be formed by merging buckets i and i - 1, and Si,i-1 

(Si,i-1 = Si + Si-1) denote the size of this bucket. We maintain the following 
two invariants that guarantee a small relative error E in estimation and small 
number of buckets: 

INVARIANT 3.1 For every bucket Bi, &si I Si*. 

I I I m TI.m 

4 
I 

Bm * I 
I 

INVARIANT 3.2 For each i > 1, for every bucket Bi, 

. . . . . . . . . . . . . . . 0 . . . . . . . , . . . . . . . . . . . . . . . . . . 

It follows from Invariant 3.1 that the relative error in estimation is no more 
than & < e. Invariant 3.2 guarantees that the number of buckets is no 

. . . . . . . . . . . . . . . . . . . 
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more than O(?(log N + log R)). It is easy to see the proof of this claim. 
Since Si* = ~ d z :  Sly i.e., the bucket sizes are additive, after every [ l / ~ 1  
buckets (rather [1/2-51 pairs of buckets) the value of Si* doubles. As a result, 
after 0($(log N + log R)) buckets the value of Si* exceeds NR, which is the 
maximum value that can be achieved by Si*. We now present a simple insert 
algorithm that maintains the two invariants above as new elements arrive. 

Algorithm (Insert): xt denotes the most recent element. 

1 If xt = 0, then do nothing. Otherwise, create a new bucket for xt. The new bucket 
becomes B1 with S1 = xt. Every old bucket Bi becomes Bi+l. 

2 If the oldest bucket B, has timestamp greater than N, delete the bucket. Bucket B,-1 
becomes the new oldest bucket. 

3 Merge step: Let k = $. While there exists an index i > 2 such that kSi,i-l < Si-l*, 
find the smallest such i and combine buckets Bi and Bi-1 using the combination rule 
described earlier. Note that Si* value can be computed incrementally by adding Si-1 
and Si-I*, as we make the sweep. 

Note, Invariant 3.1 holds for buckets that have been formed as a result of the 
merging of two or more buckets because the merging condition assures that it 
holds for the merged bucket. Addition of new elements in the future does not 
violate the invariant, since the right-hand side of the invariant can only increase 
by addition of the new elements. However, the invariant may not hold for a 
bucket that contains a singleton nonzero element and was never merged. The 
fact that the invariant does not hold for such a bucket, does not affect the error 
bound for the estimation procedure because, if such a bucket were to become 
the last bucket, we know the exact timestamp for the only non zero element in 
the bucket. As a result there is no interpolation error in that case. 

Analogously to the variables TOTAL and LAST in Section 1.1, we can main- 
tain Sm + Sm* and Sm that enable us to answer queries in O(1) time. The 
algorithm for insertion requires o(? (log N + log R)) time per new element. 
Most of the time is spent in Step 3, where we make the sweep to combine buck- 
ets. This time is proportional to number of buckets, (O($(log N + log R))). A 
simple trick, to skip Step 3 until we have seen O(? (log N +log R)) data points, 
ensures that the running time of the algorithm is amortized O(1). While we may 
violate Invariant 3.2 temporarily, we restore it after seeing O(: (log N +log R)) 
data points, by executing Step 3, which ensures that the number of buckets is 
0 ( $  (log N +log R)). The space requirement for each bucket (memory needed 
to maintain timestamp and size) is log N + log R bits. If we assume that a word 
is at least log N + log R bits long, equivalently the size required to count up 
to NR, which is the maximum value of the answer, we get that the total mem- 
ory requirement is o($ (log N + log R)) words or o(: (log N + log R)2) bits. 
Please refer to [8] for a more complex procedure that has similar time require- 
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ments and space requirement o($ log N(1og N + log R)) bits. To summarize, 
we get the following theorem: 

THEOREM 3.3 The sum ofpositive integers in the range [0 . . . R] can be es- 
timated over sliding windows with relative error at most E using o($ (log N + 
log R)) words of memory. The time to update the underlying EH is worst case 
o($ (log N + log R)) and amortized O(1). 

Similar to the space lower bound that we presented in Section 2, one can 
show a space lower bound of R($ (log N + log R) (log N)) bits for the SUM 
problem. See [8] for details. This is asymptotically equal to the upper bound 
for the algorithm in [8] that we mentioned earlier. 

It is natural to ask the question: What happens if we do not restrict data 
elements to positive integers and are interested in estimating the sum over sliding 
windows. We show that even if we restrict the set of unique data elements to 
{1,0, -11, to approximate the sum within a constant factor requires R(N) 
bits of memory. Moreover, it is easy to maintain the sum by storing the last 
N integers which requires O(N) bits of memory. We assume that the storage 
required for every integer is a constant independent of the window size N. With 
this assumption, we have that the complexity of the problem in the general case 
(allowing positive and negative integers) is Q ( N ) .  

We now argue the lower bound of O ( N ) .  Consider an algorithm A that 
provides a constant-factor approximation to the problem of maintaining the 
general sum. Given a bit vector of size N/2 we present the algorithm A with 
the pair (-1,l) for every 1 in the bit vector and the pair (1, -1) for every 0. 
Consider the state (time instance) after we have presented all the N/2 pairs to 
the algorithm. We claim that we can completely recover the original bit vector 
by presenting a sequence of 0's henceforth and querying the algorithm on every 
odd time instance. If the current time instance is T (after having presented 
the N/2 pairs) then it is easy to see that the correct answer at time instance 
T + 22 - 1 (1 < i < N/2) is 1 iff the ith bit was 1 and -1 iff the ith bit was 
0. Since the algorithm A gives a constant factor approximation its estimate 
would be positive if the correct answer is 1 and negative if the correct answer 
was -1. Since the state of the algorithm after feeding the N/2 pairs enables us 
to recover the bit vector exactly for any arbitrary bit vector it must be using at 
least N/2 bits of memory to encode it. This proves the lower bound. We can 
state the following theorem: 

THEOREM 3.4 The space complexity of any algorithm that gives a constant 
factor approximation, at every instant, to the problem of maintaining the sum 
of last N integers (positive or negative) that appear as stream of data elements 
is equal to O(N). 
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4. References and Related Work 
The EH technique, that we demonstrate through solutions to the BASIC- 

COUNTING and SUM problem, is by Datar, Gionis, Indyk and Motwani [8]. 
The space lower bounds, presented above, are also from that paper. In the same 
paper, the authors characterize a general class of weakly additive functions that 
can be efficiently estimated over sliding windows, using the EH technique. Also 
see, Datar's PhD thesis [7] for more details. 

As we have seen in other chapters from this book, it is often the case that 
input data streams are best visualized as a high dimensional vector. A standard 
operation is to compute the 1, norm, for 0 < p 5 2, of these vectors or 
the I, norm of the difference between two vectors. In Chapter, we have seen 
sketching techniques to estimate these I, norms using small space. It turns 
out that, when each data element in the data stream represents an increment 
to some dimension of the underlying high dimensional vector, the I, norm of 
a vector belongs to the class of weakly additive functions mentioned above. 
Consequently, for the restricted case when the increments are positive, the EH 
technique in conjunction with the sketching technique, can be adapted to the 
estimate 1, norms over the sliding windows. See [8,7] for details. 

Babcock, Datar, Motwani and O'Callaghan [4] showed that the variance of 
real numbers with maximum absolute value R, can be estimated over sliding 
windows with relative error at most E using o($ (log N + log R)) words of 
memory. The update time for the data structure is worst case O($(log N + 
log R)) and amortized O(1). In the same paper, the authors look at the problem 
of maintaining k-medians clustering of points over a sliding window. They 
present an algorithm that uses o($ N~~ log2 N )  memo$ and presents k ten- 

ters, for which the objective function value is within a constant factor (2O('/')) 

of optimal, where T < 112 is a parameter which captures the trade-off between 
the space bound and the approximation ratio. The update time for the data 
structure is worst case o($N") and amortized ~ ( k ) .  Both these algorithms 
are an adaptation of the EH technique, presented in Section 3 above. 

In this chapter, we have focussed on the sliding-window model, that assumes 
that the pertinent data set is the last N data elements, i.e., we focus on sequence- 
based sliding-window model. In other words, we assumed that data items arrive 
at regular time intervals and arrival time increases by one with every new data 
item that we have seen. Such regularity in arrival of data items is seldom true for 
most real life applications, for which arrival rates of data items may be bursty. 
Often, we would like to define the sliding window based on real time. It is easy 

9 ~ h e  space required to hold a single data point, which in this case is a point from some metric space, is 
assumed to be O(1) words. 



164 DATA STREAMS: MODELS AND ALGORITHMS 

to adapt the EH technique to such a time-based sliding-window model. See 
[8,7] for details. 

One may argue that the sliding-window model is not the right model to 
discount old data, in the least not the only model. If our aim is to assign a 
smaller weight to older elements so that they contribute less to any statistics or 
models we maintain, we may want to consider other monotonically decreasing 
functions (time decayed functions) for assigning weights to elements other than 
the step function (1 for the last N elements and 0 beyond) that is implicit in the 
sliding-window model. Anatural decay function is the exponentially decreasing 
weight function that was considered by Gilbert et al. [12] in maintaining aged 
aggregates: For a data stream . . . , x(-21, x ( - ~ ) ,  ~(01, where x(0) is the most 
recently seen data element, A-aging aggregate is defined as + X(l - 
X)X(-~) + X(1- X)2x(-2) + . . .. Exponentially decayed statistics as above are 
easy to maintain, although one may argue that exponential decay of weights 
is not suited for all applications or is too restrictive. We may desire a richer 
class of decay functions, e.g. polynomially decaying weight functions instead 
of exponential decay. Cohen and Strauss [5] show how to maintain statistics 
efficiently for a general class of time decaying functions. Their solutions use 
the EH technique as a building block or subroutine, there by demonstrating the 
applicability of the EH technique to a wider class of models that allow for time 
decay, besides the sliding-window model that we have considered. 

See [7] for solutions to other problems in the sliding-window model, that 
do not rely on the EH technique. These problems include maintaining a uni- 
form random sample(See also [3]), maintaining the min/max of real numbers, 
estimating the ratio of rare1 elements to the number of distinct elements(See 
also [9]), and estimating the similarity between two data streams measured 
according to the Jaccard coefficient for set similarity between two sets A, B: 
[ A n  BI/IAU BI(See also [9]). 

Maintaining approximate counts of high frequency elements and maintain- 
ing approximate quantiles, are important problems that have been studied in 
database research as maintaining end-biased histograms and maintaining equi- 
depth histograms. These problems are particularly useful for sliding-window 
join processing; they provide the necessary join statistics and can also be used 
for approximate computation of joins. A solution to these problems, in the 
sliding-window model, is presented by Arasu and Manku [2] and Lu et al. [I 71. 

5. Conclusion 
In this chapter we have studied algorithms for two simple problems, BASIC- 

COUNTING and SUM, in the sliding-window model; a natural model to discount 

"An element is termed rare if it occurs only once (or a small number of times) in the sliding window 
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Problem Space lower 
bound 

(in words) 
(when available) 

Amortized 
update 
time 

Worst case 
update 
time 

Space requirement 
requirement 

(in words) 

O($ log N )  a($ log N )  

0 ( $  log N )  

Variance a(+ log N )  

I ,  norm 
sketches 

k-median 
(20(' /7)- 

approx.) 

Similarity O(l0g log N )  
(w.h.p) 

O(l0g log N )  
(w.h.p.) 

Rarity O(l0g log N )  
(w.h.p) 

O(1og log N )  
(w.h.p.) 

Approx. 
counts 

O($ log $ log N )  Quantiles 

Table 8.1. Summary of results for the sliding-window model. 
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stale data that only considers the last N elements as being pertinent. Our aim 
was to showcase the Exponential Histogram (EH) technique that has been used 
to efficiently solve various problems over sliding windows. We also presented 
space lower bounds for the two problems above. See Table 8.1 for a summary 
of results in the sliding-window model. Note, for this summary, we measure 
memory in words, where a word is assumed large enough to hold the answer 
or one unit of answer. For example, in the case of BASICCOUNTING a word is 
assumed to be log N bits long, for SUM word is assumed to be log N + log R 
bits long, for I ,  norm sketches we assume that sketches can fit in a word, for 
clustering a word is assumed large enough to be able to hold a single point from 
the metric space, and so on. Similarly, we assume it is possible to do a single 
word operation in one unit of time while measuring time requirements. 
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Abstract 
The large volume of data streams poses unique space and time constraints on 

the computation process. Many query processing, database operations, and min- 
ing algorithms require efficient execution which can be difficult to achieve with 
a fast data stream. In many cases, it may be acceptable to generate approximate 
solutions for such problems. In recent years a number of synopsis structures 
have been developed, which can be used in conjunction with a variety of mining 
and query processing techniques in data stream processing. Some key synopsis 
methods include those of sampling, wavelets, sketches and histograms. In this 
chapter, we will provide a survey of the key synopsis techniques, and the min- 
ing techniques supported by such methods. We will discuss the challenges and 
tradeoffs associated with using different kinds of techniques, and the important 
research directions for synopsis construction. 

1. Introduction 
Data streams pose a unique challenge to many database and data mining 

applications because of the computational and storage costs associated with 
the large volume of the data stream. In many cases, synopsis data structures 
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and statistics can be constructed from streams which are useful for a variety of 
applications. Some examples of such applications are as follows: 

Approximate Query Estimation: The problem of query estimation is 
possibly the most widely used application of synopsis structures [I 11. 
The problem is particularly important from an efficiency point of view, 
since queries usually have to be resolved in online time. Therefore, most 
synopsis methods such as sampling, histograms, wavelets and sketches 
are usually designed to be able to solve the query estimation problem. 

Approximate Join Estimation: The efficient estimation of join size is a 
particularly challenging problem in streams when the domain of the join 
attributes is particularly large. Many methods [5,26,27] have recently 
been designed for efficient join estimation over data streams. 

Computing Aggregates: In many data stream computation problems, it 
may be desirable to compute aggregate statistics [40] over data streams. 
Some applications include estimation of frequency counts, quantiles, and 
heavy hitters [13, 18, 72, 761. A variety of synopsis structures such as 
sketches or histograms can be useful for such cases. 

Data Mining Applications: A variety of data mining applications such 
as change detection do not require to use the individual data points, but 
only require a temporal synopsis which provides an overview of the be- 
havior of the stream. Methods such as clustering [I] and sketches [88] 
can be used for effective change detection in data streams. Similarly, 
many classification methods [2] can be used on a supervised synopsis of 
the stream. 

The design and choice of a particular synopsis method depends on the problem 
being solved with it. Therefore, the synopsis needs to be constructed in a 
way which is friendly to the needs of the particular problem being solved. 
For example, a synopsis structure used for query estimation is likely to be very 
different from a synopsis structure used for data mining problems such as change 
detection and classification. In general, we would like to construct the synopsis 
structure in such a way that it has wide applicability across broad classes of 
problems. In addition, the applicability to data streams makes the efficiency 
issue of space and time-construction critical. In particular, the desiderata for 
effective synopsis construction are as follows: 

Broad Applicability: Since synopsis structures are used for a variety 
of data mining applications, it is desirable for them to have as broad 
an applicability as possible. This is because one may desire to use the 
underlying data stream for as many different applications. If synopsis 
construction methods have narrow applicability, then a different structure 



A Survey of Synopsis Construction in Data Streams 171 

will need to be computed for each application. This will reduce the time 
and space efficiency of synopsis construction. 

One Pass Constraint: Since data streams typically contain a large num- 
ber of points, the contents of the stream cannot be examined more than 
once during the course of computation. Therefore, all synopsis construc- 
tion algorithms are designed under a one-pass constraint. 

Time and Space Efficiency: In many traditional synopsis methods on 
static data sets (such as histograms), the underlying dynamic program- 
ming methodologies require super-linear space and time. This is not 
acceptable for a data stream. For the case of space efficiency, it is not 
desirable to have a complexity which is more than linear in the size of 
the stream. In fact, in some methods such as sketches [44], the space 
complexity is often designed to be logarithmic in the domain-size of the 
stream. 

Robustness: The error metric of a synopsis structure needs to be designed 
in a robust way according to the needs of the underlying application. For 
example, it has often been observed that some wavelet based methods for 
approximate query processing may be optimal from a global perspective, 
but may provide very large error on some of the points in the stream [65]. 
This is an issue which needs the design of robust metrics such as the 
maximum error metric for stream based wavelet computation. 

Evolution Sensitive: Data Streams rarely show stable distributions, but 
rapidly evolve over time. Synopsis methods for static data sets are often 
not designed to deal with the rapid evolution of a data stream. For this 
purpose, methods such as clustering [I] are used for the purpose of syn- 
opsis driven applications such as classification [2]. Carefully designed 
synopsis structures can also be used for forecasting futuristic queries [3], 
with the use of evolution-sensitive synopsis. 

There are a variety of techniques which can be used for synopsis construction 
in data streams. We summarize these methods below: 

rn Sampling methods: Sampling methods are among the most simple 
methods for synopsis construction in data streams. It is also relatively 
easy to use these synopsis with a wide variety of application since their 
representation is not specialized and uses the same multi-dimensional 
representation as the original data points. In particular reservoir based 
sampling methods [92] are very useful for data streams. 

Histograms: Histogram based methods are widely used for static data 
sets. However most traditional algorithms on static data sets require 
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super-linear time and space. This is because of the use of dynamic pro- 
gramming techniques for optimal histogram construction. Their exten- 
sion to the data stream case is a challenging task. A number of recent 
techniques [37] discuss the design of histograms for the dynamic case. 

Wavelets: Wavelets have traditionally been used in a variety of image and 
query processing applications. In this chapter, we will discuss the issues 
and challenges involved in dynamic wavelet construction. In particular, 
the dynamic maintenance of the dominant coefficients of the wavelet 
representation requires some novel algorithmic techniques. 

Sketches: Sketch-based methods derive their inspiration from wavelet 
techniques. In fact, sketch based methods can be considered a ran- 
domized version of wavelet techniques, and are among the most space- 
efficient of all methods. However, because of the difficulty of intuitive 
interpretations of sketch based representations, they are sometimes diffi- 
cult to apply to arbitrary applications. In particular, the generalization of 
sketch methods to the multi-dimensional case is still an open problem. 

Micro-cluster based summarization: A recent micro-clustering method 
[I] can be used be perform synopsis construction of data streams. The 
advantage of micro-cluster summarization is that it is applicable to the 
multi-dimensional case, and adjusts well to the evolution of the under- 
lying data stream. While the empirical effectiveness of the method is 
quite good, its heuristic nature makes it difficult to find good theoretical 
bounds on its effectiveness. Since this method is discussed in detail in 
another chapter of this book, we will not elaborate on it further. 

In this chapter, we will provide an overview of the different methods for synopsis 
construction, and their application to a variety of data mining and database 
problems. This chapter is organized as follows. In the next section, we will 
discuss the sampling method and its application to different kinds of data mining 
problems. In section 3, we will discuss the technique of wavelets for data 
approximation. In section 4, we will discuss the technique of sketches for 
data stream approximation. The method of histograms is discussed in section 
4. Section 5 discusses the conclusions and challenges in effective data stream 
summarization. 

2. Sampling Methods 
Sampling is a popular tool used for many applications, and has several ad- 

vantages from an application perspective. One advantage is that sampling is 
easy and efficient, and usually provides an unbiased estimate of the underlying 
data with provable error guarantees. Another advantage of sampling methods 
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is that since they use the original representation of the records, they are easy to 
use with any data mining application or database operation. In most cases, the 
error guarantees of sampling methods generalize to the mining behavior of the 
underlying application. Many synopsis methods such as wavelets, histograms, 
and sketches are not easy to use for the multi-dimensional cases. The random 
sampling technique is often the only method of choice for high dimensional 
applications. 

Before discussing the application to data streams, let us examine some prop- 
erties of the random sampling approach. Let us assume that we have a database 
D containing N points which are denoted by XI . . . XN. Let us assume that 
the function f (D) represents an operation which we wish to perform on the 
database D. For example f (V) may represent the mean or sum of one of the 
attributes in database D. We note that a random sample S from database V 
defines a random variable f (S) which is (often) closely related to f (23) for 
many commonly used functions. It is also possible to estimate the standard 
deviation of f (S) in many cases. In the case of aggregation based functions 
in linear separable form (eg. sum, mean), the law of large numbers allows us 
to approximate the random variable f (S) as a normal distribution, and char- 
acterize the value of f (2)) probabilistically. However, not all functions are 
aggregation based (eg. min, max). In such cases, it is desirable to estimate the 
mean p and standard deviation a off (S) . These parameters allows us to design 
probabilistic bounds on the value off (S). This is often quite acceptable as an 
alternative to characterizing the entire distribution off  (S). Such probabilistic 
bounds can be estimated using a number of inequalities which are also often 
referred to as tail bounds. 

The markov inequality is a weak inequality which provides the following 
bound for the random variable X: 

By applying the Markov inequality to the random variable (X - p)2 /a2 ,  we 
obtain the Chebychev inequality: 

While the Markov and Chebychev inequalities are farily general inequalities, 
they are quite loose in practice, and can be tightened when the distribution 
of the random variable X is known. We note that the Chebychev inequality is 
derived by applying the Markov inequality on a function of the random variable 
X. Even tighter bounds can be obtained when the random variable X shows 
a specific form, by applying the Markov inequality to parameterized functions 
of X and optimizing the parameter using the particular characteristics of the 
random variable X . 



174 DATA STREAMS: MODELS AND ALGORITHMS 

The Chernoff bound [14] applies when X is the sum of several independent 
and identical Bernoulli random variables, and has a lower tail bound as well as 
an upper tail bound: 

Another kind of inequality often used in stream mining is the Hoeffding 
inequality. In this inequality, we bound the sum of k independent bounded 
random variables. For example, for a set of k independent random variables 
lying in the range [a, b], the sum of these k random variables X satisfies the 
following inequality: 

We note that the Hoeffding inequality is slightly more general than the Cher- 
noff bound, and both bounds have similar form for overlapping cases. These 
bounds have been used for a variety of problems in data stream mining such as 
classification, and query estimation [28,58]. In general, the method of random 
sampling is quite powerful, and can be used for a variety of problems such as 
order statistics estimation, and distinct value queries [41,72]. 

In many applications, it may be desirable to pick out a sample (reservoir) 
from the stream with a pre-decided size, and apply the algorithm of interest 
to this sample in order to estimate the results. One key issue in the case of 
data streams is that we are not sampling from a fixed data set with known size 
N. Rather, the value of N is unknown in advance, and the sampling must be 
performed dynamically as data points arrive. Therefore, in order to maintain 
an unbiased representation of the underlying data, the probability of including 
a point in the random sample should not be fixed in advance, but should change 
with progression of the data stream. For this purpose, reservoir based sampling 
methods are usually quite effective in practice. 

2.1 Random Sampling with a Reservoir 
Reservoir based methods [92] were originally proposed in the context of 

one-pass access of data from magnetic storage devices such as tapes. As in the 
case of streams, the number of records N are not known in advance and the 
sampling must be performed dynamically as the records from the tape are read. 

Let us assume that we wish to obtain an unbiased sample of size n from 
the data stream. In this algorithm, we maintain a reservoir of size n from the 
data stream. The first n points in the data streams are added to the reservoir 
for initialization. Subsequently, when the (t + 1)th point from the data stream 
is received, it is added to the reservoir with probability n/( t  + 1). In order 
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to make room for the new point, any of the current points in the reservoir are 
sampled with equal probability and subsequently removed. 

The proof that this sampling approach maintains the unbiased character of 
the reservoir is straightforward, and uses induction on t. The probability of the 
(t + 1)th point being included in the reservoir is n/(t  + 1). The probability 
of any of the last t points being included in the reservoir is defined by the sum 
of the probabilities of the events corresponding to whether or not the (t + 1)th 
point is added to the reservoir. From the inductive assumption, we know that the 
first t points have equal probability of being included in the reservoir and have 
probability equal to nit. In addition, since the points remain in the reservoir 
with equal probability of (n - l) /n,  the conditional probability of a point 
(among the first t points) remaining in the reservoir given that the (t + 1) point 
is added is equal to (nl t )  . (n - l ) / n  = (n - l)/t. By summing the probability 
over the cases where the (t+ 1)th point is added to the reservoir (or not), we get a 
totalprobabilityof ((n/(t+l)).(n- l ) / t+( l  -(n/(t+l))).(n/t) = n/(t+l). 
Therefore, the inclusion of all points in the reservoir has equal probability which 
is equal to n/(t  + 1). As a result, at the end of the stream sampling process, all 
points in the stream have equal probability of being included in the reservoir, 
which is equal to n/N. 

In many cases, the stream data may evolve over time, and the corresponding 
data mining or query results may also change over time. Thus, the results of 
a query over a more recent window may be quite different from the results 
of a query over a more distant window. Similarly, the entire history of the 
data stream may not relevant for use in a repetitive data mining application 
such as classification. Recently, the reservoir sampling algorithm was adapted 
to sample from a moving window over data streams [8]. This is useful for 
data streams, since only a small amount of recent history is more relevant that 
the entire data stream. However, this can sometimes be an extreme solution, 
since one may desire to sample from varying lengths of the stream history. 
While recent queries may be more frequent, it is also not possible to completely 
disregard queries over more distant horizons in the data stream. A method in [4] 
designs methods for biased reservoir sampling, which uses a bias function to 
regulate the sampling from the stream. This bias function is quite effective since 
it regulates the sampling in a smooth way so that queries over recent horizons 
are more accurately resolved. While the design of a reservoir for arbitrary 
bias function is extremely difficult, it is shown in [4], that certain classes of 
bias functions (exponential bias functions) allow the use of a straightforward 
replacement algorithm. The advantage of a bias function is that it can smoothly 
regulate the sampling process so that acceptable accuracy is retained for more 
distant queries. The method in [4] can also be used in data mining applications 
so that the quality of the results do not degrade very quickly. 
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2.2 Concise Sampling 
The effectiveness of the reservoir based sampling method can be improved 

further with the use of concise sampling. We note that the size of the reservoir 
is sometimes restricted by the available main memory. It is desirable to increase 
the sample size within the available main memory restrictions. For this purpose, 
the technique of concise sampling is quite effective. 

The method of concise sampling exploits the fact that the number of dis- 
tinct values of an attribute is often significantly smaller than the size of the data 
stream. This technique is most applicable while performing univariate sampling 
along a single dimension. For the case of multi-dimensional sampling, the sim- 
ple reservoir based method discussed above is more appropriate. The repeated 
occurrence of the same value can be exploited in order to increase the sample 
size beyond the relevant space restrictions. We note that when the number of 
distinct values in the stream is smaller than the main memory limitations, the 
entire stream can be maintained in main memory, and therefore sampling may 
not even be necessary. For current desktop systems in which the memory sizes 
may be of the order of several gigabytes, very large sample sizes can be main 
memory resident, as long as the number of distinct values does not exceed the 
memory constraints. On the other hand, for more challenging streams with an 
unusually large number of distinct values, we can use the following approach. 

The sample is maintained as a set S of <value, count> pairs. For those pairs 
in which the value of count is one, we do not maintain the count explicitly, 
but we maintain the value as a singleton. The number of elements in this 
representation is referred to as the footprint and is bounded above by n. We 
note that the footprint size is always smaller than or equal to than the true sample 
size. If the count of any distinct element is larger than 2, then the footprint size 
is strictly smaller than the sample size. We use a thresholdparameter T which 
defines the probability of successive sampling from the stream. The value of 
T is initialized to be 1. As the points in the stream arrive, we add them to the 
current sample with probability 117. We note that if the corresponding value- 
count pair is already included in the set S ,  then we only need to increment the 
count by 1. Therefore, the footprint size does not increase. On the other hand, 
if the value of the current point is distinct from all the values encountered so 
far, or it exists as a singleton then the foot print increases by 1. This is because 
either a singleton needs to be added, or a singleton gets converted to a value- 
count pair with a count of 2. The increase in footprint size may potentially 
require the removal of an element from sample S in order to make room for the 
new insertion. When this situation arises, we pick a new (higher) value of the 
threshold TI, and apply this threshold to the footprint in repeated passes. In each 
pass, we reduce the count of a value with probability T/T', until at least one 
value-count pair reverts to a singleton or a singleton is removed. Subsequent 
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[I Granularity (Order k )  I Averages I DWT Coefficients 

Table 9.1. An Example of Wavelet Coefficient Computation 

k = 4  
k = 3  
k = 2  
k = l  

points from the stream are sampled with probability l /r l .  As in the previous 
case, the probability of sampling reduces with stream progression, though we 
have much more flexibility in picking the threshold parameters in this case. 
More details on the approach may be found in [41]. 

One of the interesting characteristics of this approach is that the sample S 
continues to remain an unbiased representative of the data stream irrespective 
of the choice of T .  In practice, T I  may be chosen to be about 10% larger than 
the value of T .  The choice of different values of T provides different tradeoffs 
between the average (true) sample size and the computational requirements of 
reducing the footprint size. In general, the approach turns out to be quite robust 
across wide ranges of the parameter T.  

3. Wavelets 

@ values 

(8,6,2,3,4,6,6,5) 
(7,2.5,5,5.5) 
(4.75,5.25) 

( 5 )  

Wavelets [66] are a well known technique which is often used in databases 
for hierarchical data decomposition and summarization. A discussion of ap- 
plications of wavelets may be found in [lo, 66, 891. In this chapter, we will 
discuss the particular case of the Haar Wavelet. This technique is particularly 
simple to implement, and is widely used in the literature for hierarchical de- 
composition and summarization. The basic idea in the wavelet technique is to 
create a decomposition of the data characteristics into a set of wavelet functions 
and basis functions. The property of the wavelet method is that the higher order 
coefficients of the decomposition illustrate the broad trends in the data, whereas 
the more localized trends are captured by the lower order coefficients. 

We assume for ease in description that the length q  of the series is a power of 
2. This is without loss of generality, because it is always possible to decompose 
a series into segments, each of which has a length that is a power of two. The 
Haar Wavelet decomposition defines 2"' coefficients of order k .  Each of these 
2"' coefficients corresponds to a contiguous portion ofthe time series of length 
q/2"'. The ith of these 2k-1 coefficients corresponds to the segment in the 
series starting from position (i - 1 )  . q/2"' + 1 to position i * q / 2 k - 1 .  Let us 
denote this coefficient by 11; and the corresponding time series segment by S;. 
At the same time, let us define the average value of the fist  half of the S; by 

$ values 

( I ,  -0.5,-1,O.S) 
(2.25, -0.25) 

(-0.25) 
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Figure 9.1. Illustration of the Wavelet Decomposition 

a; and the second half by bk. Then, the value of is given by (a: - bk)/2.  
More formally, if denote the average value of the Si ,  then the value of $i 
can be defined recursively as follows: 

The set of Haar coefficients is defined by the lP; coefficients of order 1 
to log2(q). In addition, the global average @: is required for the purpose of 
perfect reconstruction. We note that the coefficients of different order provide an 
understanding of the major trends in the data at a particular level of granularity. 
For example, the coefficient qi is half the quantity by which the first half of 
the segment Si is larger than the second half of the same segment. Since 
larger values of Ic correspond to geometrically reducing segment sizes, one can 
obtain an understanding of the basic trends at different levels of granularity. 
We note that this definition of the Haar wavelet makes it very easy to compute 
by a sequence of averaging and differencing operations. In Table 9.1, we 
have illustrated how the wavelet coefficients are computed for the case of the 
sequence (8,6,2,3,4,6,6,5). This decomposition is illustrated in graphical 
form in Figure 9.1. We also note that each value can be represented as a 
sum of log2(8) = 3 linear decomposition components. In general, the entire 
decomposition may be represented as a tree of depth 3, which represents the 
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ORIGINAL SERIES VALUES RECONSTRUCTED FROM TREE PATH 

Figure 9.2. The Error Tree from the Wavelet Decomposition 

hierarchical decomposition of the entire series. This is also referred to as the 
error tree, and was introduced in [73]. In Figure 9.2, we have illustrated the 
error tree for the wavelet decomposition illustrated in Table 9.1. The nodes 
in the tree contain the values of the wavelet coefficients, except for a special 
super-root node which contains the series average. This super-root node is not 
necessary if we are only considering the relative values in the series, or the 
series values have been normalized so that the average is already zero. We 
m h e r  note that the number of wavelet coefficients in this series is 8, which 
is also the length of the original series. The original series has been replicated 
just below the error-tree in Figure 9.2, and it can be reconstructed by adding 
or subtracting the values in the nodes along the path leading to that value. We 
note that each coefficient in a node should be added, if we use the left branch 
below it to reach to the series values. Otherwise, it should be subtracted. This 
natural decomposition means that an entire contiguous range along the series 
can be reconstructed by using only the portion of the error-tree which is relevant 
to it. Furthermore, we only need to retain those coefficients whose values are 
significantly large, and therefore affect the values of the underlying series. In 
general, we would like to minimize the reconstruction error by retaining only 
a fixed number of coefficients, as defined by the space constraints. 

We fUrther note that the coefficients represented in Figure 9.1 are un-normalized. 
For a time series T, let F. . . be the corresponding basis vectors of length 
t. In Figure 9.1, each component of these basis vectors is 0, +1, or -1. The list 
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of basis vectors in Figure 9.1 (in the same order as the corresponding wavelets 
illustrated) are as follows: 

The most detailed coefficients have only one +1 and one -1, whereas the 
most coarse coefficient has t/2 +1 and -1 entries. Thus, in this case, we need 
23 - 1 = 7 wavelet vectors. In addition, the vector (11 11 11 11) is needed to 
represent the special coefficient which corresponds to the series average. Then, 
if a1 . . . at be the wavelet coefficients for the wavelet vectors K.  . . K, the 
time series T can be represented as follows: 

While ai is the un-normalized value from Figure 9.1, the values ai . rep- 
resent normalized coefficients. We note that the values of lKl are different for 
coefficients of different orders, and may be equal to either fi, f i  or .\/8 in this 
particular example. For example, in the case of Figure 9.1, the broadest level un- 
normalized coefficient is -0.25, whereas the corresponding normalized value 
is -0.25 - 4. After normalization, the basis vectors K. . . are orthonor- 
mal, and therefore, the sum of the squares of the corresponding (normalized) 
coefficients is equal to the energy in the time series T. Since the normalized co- 
efficients provide a new coordinate representation after axis rotation, euclidian 
distances between time series are preserved in this new representation. 

The total number of coefficients is equal to the length of the data stream. 
Therefore, for very large time series or data streams, the number of coeffi- 
cients is also large. This makes it impractical to retain the entire decomposition 
throughout the computation. The wavelet decomposition method provides a 
natural method for dimensionality reduction, by retaining only the coefficients 
with large absolute values. All other coefficients are implicitly approximated 
to zero. This makes it possible to approximately represent the series with a 
small number of coefficients. The idea is to retain only a pre-defined number of 
coefficients from the decomposition, so that the error of the reduced representa- 
tion is minimized. Wavelets are used extensively for efficient and approximate 
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query processing of different kinds of data [I 1,931. They are particularly useful 
for range queries, since contiguous ranges can easily be reconstructed with a 
small number of wavelet coefficients. The efficiency of the query processing 
arises from the reduced representation of the data. At the same time, since only 
the small coefficients are discarded the results are quite accurate. 

A key issue for the accuracy of the query processing is the choice of coef- 
ficients which should be retained. While it may be tempting to choose only 
the coefficients with large absolute values, this is not always the best choice, 
since a more judicious choice of coefficients can lead to minimizing specific 
error criteria. Two such metrics are the minimization of the mean square error 
or the maximum error metric. The mean square error minimizes the L2 error 
in approximation of the wavelet coefficients, whereas maximum error metrics 
minimize the maximum error of any coefficient. Another related metric is the 
relative maximum error which normalizes the maximum error with the absolute 
coefficient value. 

It has been shown in [89] that the choice of largest B (normalized) coefficients 
minimizes the mean square error criterion. This should also be evident from the 
fact that the normalized coefficients render an orthonormal decomposition, as a 
result of which the energy in the series is equal to the sum of the squares of the 
coefficients. However, the use of the mean square error metric is not without 
its disadvantages. A key disadvantage is that a global optimization criterion 
implies that the local behavior of the approximation is ignored. Therefore, the 
approximation arising from reconstruction can be arbitrarily poor for certain 
regions of the series. This is especially relevant in many streaming applications 
in which the queries are performed only over recent time windows. In many 
cases, the maximum error metric provides much more robust guarantees. In 
such cases, the errors are spread out over the different coefficients more evenly. 
As a result, the worst-case behavior of the approximation over different queries 
is much more robust. 

Two such methods for minimization of maximum error metrics are discussed 
in [38,39]. The method in [38] is probabilistic, but its application ofprobabilis- 
tic expectation is questionable according to [53]. One feature of the method 
in [38] is that the space is bounded only in expectation, and the variance in 
space usage is large. The technique in [39] is deterministic and uses dynamic 
programming in order to optimize the maximum error metric. The key idea in 
[39] is to define a recursion over the nodes of the tree in top down fashion. For 
a given internal node, we compute the least maximum error over the two cases 
of either keeping or not keeping a wavelet coefficient of this node. In each case, 
we need to recursively compute the maximum error for its two children over 
all possible space allocations among two children nodes. While the method is 
quite elegant, it is computationally intensive, and it is therefore not suitable for 
the data stream case. We also note that the coefficient is defined according to 
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the wavelet coefficient definition i.e. half the difference between the left hand 
and right hand side of the time series. While this choice of coefficient is optimal 
for the L2 metric, this is not the case for maximum or arbitrary Lp error metrics. 

Another important topic in wavelet decomposition is that of the use of multi- 
ple measures associated with the time series. The problem of multiple measures 
refers to the fact that many quantities may simultaneously be tracked in a given 
time series. For example, in a sensor application, one may simultaneously track 
many variables such as temperature, pressure and other parameters at each time 
instant. We would like to perform the wavelet decomposition over multiple 
measures simultaneously. The most natural technique [89] is to perform the 
decomposition along the different measures separately and pick the largest co- 
efficients for each measure of the decomposition. This can be inefficient, since 
a coordinate needs to be associated with each separately stored coefficient and it 
may need to be stored multiple times. It would be more efficient to amortize the 
storage of a coordinate across multiple measures. The trade-off is that while a 
given coordinate may be the most effective representation for a particular mea- 
sure, it may not simultaneously be the most effective representation across all 
measures. In [25], it has been proposed to use an extended wavelet represen- 
tation which simultaneously tracks multi-measure coefficients of the wavelet 
representation. The idea in this technique is use a bitrnap for each coefficient 
set to determine which dimensions are retained, and store all coefficients for 
this coordinate. The technique has been shown to significantly outperform the 
methods discussed in [89]. 

3.1 Recent Research on Wavelet Decomposition in Data 
Streams 

The one-pass requirement of data streams makes the problem of wavelet 
decomposition somewhat more challenging. However, the case of optimizing 
the mean square error criterion is relatively simple, since a choice of the largest 
coefficients can preserve the effectiveness of the decomposition. Therefore, we 
only need to dynamically construct the wavelet decomposition, and keep track 
of the largest B coefficients encountered so far. 

As discussed in [65], these methods can have a number of disadvantages in 
many situations, since many parts of the time series may be approximated very 
poorly. The method in [39] can effectively perform the wavelet decomposi- 
tion with maximum error metrics. However, since the method uses dynamic 
programming, it is computationally intensive, it is quadratic in the length of 
the series. Therefore, it cannot be used effectively for the case of data streams, 
which require a one-pass methodology in linear time. in [5 11, it has been shown 
that all weighted L, measures can be solved in a space-efficient manner using 
only O(n) space. In [65], methods have been proposed for one-pass wavelet 
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synopses with the maximum error metric. It has been shown in [65],  that by us- 
ing a number of intuitive thresholding techniques, it is possible to approximate 
the effectiveness of the technique discussed in [39].  A set of independent results 
obtained in [55]  discuss how to minimize non-euclidean and relative error with 
the use of wavelet synopses. This includes metrics such as the Lp error or the 
relative error. Both the works of [65] and [55] were obtained independently 
and at a similar time. While the method in [65] is more deeply focussed on the 
use of maximum error metrics, the work in [55]  also provides some worst case 
bounds on the quality of the approximation. The method of [65] depends on 
experimental results to illustrate the quality of the approximation. Another in- 
teresting point made in [%] is that most wavelet approximation methods solve a 
restricted version of the problem in which the wavelet coefficient for the basis is 
defined to be half the difference between the left hand and right hand side of the 
basis vectors. Thus, the problem is only one of picking the best B coefficients 
out of these pre-defined set of coefficients. While this is an intuitive method 
for computation of the wavelet coefficient, and is optimal for the case of the 
Euclidean error, it is not necessarily optimal for the case of the Lm-metric. For 
example, consider the time series vector (1,4,5,6). In this case, the wavelet 
transform is (4, -1.5, -1.5, -0.5). Thus, for B = 1, the optimal coefficient 
picked is (4,0,0,0) for any Lm-metric. However, for the case of L,-metric, 
the optimal solution should be (3.5,0,0,0), since 3.5 represents the average 
between the minimum and maximum value. Clearly, any scheme which re- 
stricts itself only to wavelet coefficients defined in a particular way will not 
even consider this solution 1551. Almost all methods for non-euclidean wavelet 
computation tend to use this approach, possibly as a legacy from the Haar 
method of wavelet decomposition. This restriction has been removed in [55]  
and proposes a method for determining the optimal synopsis coeficients for the 
case of the weighted Lm metric. We distinguish between synopsis coefficients 
and wavelet coefficients, since the latter are defined by the simple subtractive 
methodology of the Haar decomposition. A related method was also proposed 
by Matias and Urieli [75]  which discusses a near linear time optimal algorithm 
for the weighted Lm-error. This method is offline, and chooses a basis vector 
which depends upon the weights. 

An interesting extension of the wavelet decomposition method is one in 
which multiple measures are associated with the time series. A natural solu- 
tion is to treat each measure separately, and store the wavelet decomposition. 
However, this can be wasteful, since a coordinate needs to be stored with each 
coefficient, and we can amortize this storage by storing the same coordinate 
across multiple measures. A technique in [25] proposes the concept of ex- 
tended wavelets in order to amortize the coordinate storage across multiple 
measures. In this representation, one or more coefficients are stored with each 
coordinate. Clearly, it can be tricky to determine which coordinates to store, 
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since different coordinates will render larger coefficients across different mea- 
sures. The technique in [25] uses a dynamic programming method to determine 
the optimal extended wavelet decomposition. However, this method is not time 
and space efficient. A method in [52] provides a fast algorithm whose space 
requirement is linear in the size of the synopsis and logarithmic in the size of 
the data stream. 

Another important point to be noted is that the choice of the best wavelet 
decomposition is not necessarily pre-defined, but it depends upon the particular 
workload on which the wavelet decomposition is applied. Some interesting 
papers in this direction [77, 751 design methods for workload aware wavelet 
synopses of data streams. While this line of work has not been extensively re- 
searched, we believe that it is likely to be fruitful in many data stream scenarios. 

4. Sketches 
The idea of sketches is essentially an extension of the random projection 

technique [64] to the time series domain. The idea of using this technique for 
determining representative trends in the time series domain was first observed 
in 1611. In the method of random projection, we can reduce a data point of 
dimensionality d to an axis system of dimensionality k by picking k random 
vectors of dimensionality d and calculating the dot product of the data point 
with each of these random vectors. Each component of the k random vectors 
is drawn from the normal distribution with zero mean and unit variance. In 
addition, the random vector is normalized to one unit in magnitude. It has 
been shown in [64] that proportional L2 distances between the data points are 
approximately preserved using this transformation. The accuracy bounds of the 
distance values are dependent on the value of k .  The larger the chosen value of 
k, the greater the accuracy and vice-versa. 

This general principle can be easily extended to the time series domain, 
by recognizing the fact that the length of a time series may be treated as its 
dimensionality, and correspondingly we need to compute a random vector of 
length equal to the time series, and use it for the purpose of sketch computation. 
If desired, the same computation can be performed over a sliding window of a 
given length by choosing a random vector of appropriate size. As proposed in 
[61], the following approximation bounds are preserved: 

LEMMA 9.1 Let L be a set of vectors of length 1, forJixed e < 112, and k = 
9 log[ LI/e2. Consider apair of vectors 'ii, E in L, such that the corresponding 
sketches are denoted by S(@) and S(E) respectively. Then, we have: 

with probability 112. Here I IU - V1 l 2  is the L2 distance between two vectors 
U and V .  
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The generalization to time series is fairly straightforward, and the work in 
1611 makes two primary contributions in extending the sketch methodology to 
finding time series trends. 

4.1 Fixed Window Sketches for Massive Time Series 
In this case, we wish to determine sliding window sketches with a fixed win- 

dow length 1. For each window of length 1, we need to perform 1 . k operations 
for a sketch of size k. Since there are O(n - 1) sliding windows, this will 
require O(n 1 k) computations. When 1 is large, and is of the same order of 
magnitude as the time series, the computation may be quadratic in the size of the 
series. This can be prohibitive for very large time series, as is usually the case 
with data streams. The key observation in [61], is that all such sketches can be 
viewed as the problem of computing the polynomial convolution of the random 
vector of appropriate length with the time series. Since the problem of poly- 
nomial convolution can be computed efficiently using fast fourier transform, 
this also means that the sketches may be computed efficiently. The problem of 
polynomial convolution is defined as follows: 

DEFINITION 9.2 Given two vectors A[1. . . a] and B[1.  . . b], a  2 b, their 
convolution is the vector C [ 1 .  . . a + b] where C[k] = c!=~ A[k - i] B[i] for 
k E [2, a + b], with any out of range references assumed to be zero. 

The key point here is that the above polynomial convolution can be computed 
using FFT, in O(a . log(b)) operations rather than O(a . b) operations. This 
effectively means the following: 

LEMMA 9.3 Sketches of all subvectors of length 1 can be computed in time 
O(n . k . log(1)) usingpolynomial convolution. 

4.2 Variable Window Sketches of Massive Time Series 
The method in the previous subsection discussed the problem of sketch com- 

putation for a fixed window length. The more general version of the problem is 
one in which we wish to compute the sketch for any subvector between length 
1 and u. In the worst-case this comprises 0 ( n 2 )  subvectors, most of which 
will have length O(n).  Therefore, the entire algorithm may require O(n3) 
operations, which can be prohibitive for massive time series streams. 

The key idea in [61] is to store a pool of sketches. The size of this pool 
is significantly smaller than the entire set of sketches needed. However, it is 
carefully chosen so that the sketch of any sub-vector in the original vector can 
be computed in O(1) time fairly accurately. In fact, it can be shown that the 
approximate sketches computed using this approach satisfy a slightly relaxed 
version of Lemma 9.1. We refer details to [61]. 
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4.3 Sketches and their applications in Data Streams 
In the previous sections we discussed the application of sketches to the prob- 

lem of massive time series. Some of the methods such as fixed window sketch 
computation are inherently offline. This does not suffice in many scenarios in 
which it is desirable to continuously compute the sketch over the data stream. 
Furthermore, in many cases, it is desirable to efficiently use this sketch in order 
to work with a variety of applications such as query estimation. In this subsec- 
tion, we will discuss the applications of sketches in the data stream scenario. 
Our earlier discussion corresponds to a sketch of the time series itself, and en- 
tails the storage of the random vector required for sketch generation. While such 
a technique can be used effectively for massive time series, it cannot always be 
used for time series data streams. 

However, in certain other applications, it may be desirable to track the fre- 
quencies of the distinct values in the data stream. In this case, if (ul . . . uN) 
be the frequencies of N distinct values in the data stream, then the sketch is 
defined by the dot product of the vector (ul . . . uN) with a random vector of 
size N. As in the previous case, the number of distinct items N may be large, 
and therefore the size of the corresponding random vector will also be large. A 
natural solution is to pre-generate a set of k random vectors, and whenever the 
ith item is received, we add 6 to the jth sketch component. Therefore, the k 
random vectors may need to be pre-stored in order to perform the computation. 
However, the explicit storage of the random vector will defeat the purpose of 
the sketch computation, because of the high space complexity. 

The key here is to store the random vectors implicitly in the form of a seed, 
which can be used to dynamically generate the vector. The key idea discussed 
in [6] is that it is possible to generate the random vectors from a seed of size 
O(log(N)) provided that one is willing to work with the restriction that the 
values of r i  E {-I, +1} are only 4-wise independent. We note that having 
a seed of small size is critical in terms of the space-efficiency of the method. 
Furthermore, it has been shown in [6] that the theoretical results only require 
4-wise independence. In [44], it has also been shown how to use Reed-Muller 
codes in order to generate 7-wise independent random numbers. These method 
suffices for the purpose of wavelet decomposition of the frequency distribution 
of different items. 

Some key properties of the pseudo-random number generation approach and 
the sketch representation are as follows: 

A given component < can be generated in poly-logarithmic time from 
the seed. 

The dot-product of two vectors can be approximately computed using 
only their sketch representations. This follows from the fact that the 
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dot product of two vectors is closely related to the Euclidean distance, 
a quantity easily approximated by the random projection approach [64]. 
Specifically, i f 8  and V be two (normalized) vectors, then the euclidean 
distance and dot product are related as follows: 

This relationship can be used to establish bounds on the quality of the dot 
product approximation of the sketch vectors. We refer to [44] for details 
of the proof. 

The fist  property ensures that the sketch components can be updated and main- 
tained efficiently. Whenever the ith value is received, we only need to add rf to 
the jth component of the sketch vector. Since the quantity rf can be efficiently 
computed, it follows that the update operations can be performed efficiently 
as well. In the event that the data stream also incorporates frequency counts 
with the arriving items (item i is associated with frequency count f (i)), then 
we simply need to add f (i) . < to the jth sketch component. We note that 
the efficient and accurate computation of the dot product of a given time series 
with the random vector is a key primitive which can be used to compute many 
properties such as the wavelet decomposition. This is because each wavelet 
coefficient can be computed as the dot product of the wavelet basis with the 
corresponding time series data stream; an approximation may be determined 
by using only their sketches. The key issue here is that we also need the sketch 
representation of the wavelet basis vectors, each of which may take O ( N )  time 
in the worst case. In general, this can be time consuming; however the work in 
[44] shows how to do this in poly-logarithmic time for the special case in which 
the vectors are Haar-basis vectors. Once the coefficients have been computed, 
we only need to retain the B coefficients with the highest energy. 

We note that one property of the results in [44] is that it uses the sketch 
representation of the frequency distribution of the original stream in order to 
derive the wavelet coefficients. A recent result in [16] works directly with the 
sketch representation of the wavelet coefficients rather than the sketch repre- 
sentation of the original data stream. Another advantage of the work in [16] 
is that the query times are much more efficient, and the work extends to the 
multi-dimensional domain. We note that while the wavelet representation in 
[44] is space efficient, the entire synopsis structure may need to be touched for 
updates and every wavelet coefficient must be touched in order to find the best 
B coefficients. The technique in [16] reduces the time and space efficiency for 
both updates and queries. 

The method of sketches can be effectively used for second moment and join 
estimation. First, we discuss the problem of second moment estimation [6] and 
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illustrate how it can be used for the problem of estimating the size of self joins. 
Consider a set of n quantitative values U = (ul . . . ulv). We would like to 
estimate the second moment I u 12. Then, as before generate the random vectors - 
r1 . . . rk,  (each of size N), and compute the dot product of these random vectors 
with U to create the sketch components denoted by S1 . . . Sk. Then, it can be 
shown that the expected value of S; is equal to the second moment. In fact, the 
approximation can be bounded with high probability. 

LEMMA 9.4 By selecting the median of O(log(1/6)) averages of O(1/e2) 
copies of S:, it is possible to guarantee the accuracy of the sketch based ap- 
proximation to within 1 + E  with probability at least 1 - 6. 

In order to prove the above result, the fist  step is to show that the expected 
value of S; is equal to the second moment, and the variance of the variable 
S: is at most twice the square of the expected value. The orthogonality of 
the random projection vectors can be used to show the fist result and the 4- 
wise independence of the values of T{ can be used to show the second. The 
relationship between the expected values and variance imply that the Chebychev 
inequality can be used to prove that the average of O(1/e2) copies provides 
the E bound with a constant probability which is at least 718. This constant 
probability can be tightened to at least 1 - 6 (for any small value of 6) with 
the use of the median of O(log(l/S)) independent copies of these averages. 
This is because the median would lie outside the €-bound only if more than 
log(l/6) /2 copies (minimum required number of copies) lie outside the E bound. 
However, the expected number of copies which lie outside the €-bound is only 
log(l/6)/8, which is less than above-mentioned required number of copies by 
3 log(1/6)/8. The Chernoff tail bounds can then be applied on the random 
variable representing the number of copies lying outside the €-bound. This can 
be used to show that the probability of more than half the log(1/6) copies lying 
outside the €-bound is at most 6. Details of the proof can be found in [6]. 

We note that the second moment immediately provides an estimation for 
self-joins. If ui be the number of items corresponding to the ith value, then 
the second moment estimation is exactly the size of the self-join. We further 
note that the dot product function is not the only one which can be estimated 
from the sketch. In general, many functions such as the dot product, the L2 
distance, or the maximum frequency items can be robustly estimated from the 
sketch. This is essentially because the sketch simply projects the time series 
onto a new set of (expected) orthogonal vectors. Therefore many rotational 
invariant properties such as the L2 distance, dot product, or second moment are 
approximately preserved by the sketch. 

A number of interesting techniques have been discussed in [5, 26, 271 in 
order to perform the estimation more effectively over general joins and multi- 
joins. Consider the multi-join problem on relations R1, R2, R3, in which we 
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wish to join attribute A of Rl with attribute B of R2, and attribute C of R2 with 
attribute D of R3. Let us assume that the join attribute on R1 with R2 has N 
distinct values, and the join attribute of R2 with R3 has M distinct values. Let 
f ( i )  be the number of tuples in R1 with value i  for attribute A. Let g(i ,  j )  be the 
number of tuples in R2 with values i and j  for attributes B and C respectively. 
Let h ( j )  be the number of tuples in R3 with value j  for join attribute C. Then, 
the total estimated join size J is given by the following: 

In order to estimate the join size, we create two independently generated fam- 
ilies of random vectors 7. . .F and 2. . . 3. We dynamically maintain the 
following quantities, as the stream points are received: 

It can be shown [ 5 ] ,  that the quantity Z{ . 2; 2; estimates the join size. We 
can use the multiple components of the sketch (different values of j )  in order to 
improve the accuracy. It can be shown that the variance of this estimate is equal 
to the product of the selfTioin sizes for the three different relations. Since the tail 
bounds use the variance in order to provide quality estimates, a large value of 
the variance can reduce the effectiveness of such bounds. This is particularly a 
problem if the composite join has a small size, whereas the product of the self- 
join sizes is very large. In such cases, the errors can be very large in relation to 
the size of the result itself. Furthermore, the product of self-join sizes increases 
with the number of joins. This degrades the results. We further note that the 
error bound results for sketch based methods are proved with the use of the 
Chebychev inequality, which depends upon a low ratio of the variance to result 
size. A high ratio of variance to result size makes this inequality ineffective, 
and therefore the derivation of worst-case bounds requires a greater number of 
sketch components. 

An interesting observation in [26] is that of sketch partitioning. In this 
technique, we intelligently partition the join attribute domain-space and use 
it in order to compute separate sketches of each partition. The resulting join 



190 DATA STREAMS: MODELS AND ALGORITHMS 

estimate is computed as the sum over all partitions. The key observation here 
is that intelligent domain partitioning reduces the variance of the estimate, and 
is therefore more accurate for practical purposes. This method has also been 
discussed in more detail for the problem of multi-query processing 1271. 

Another interesting trick for improving join size estimation is that of sketch 
skimming [34]. The key insight is that the variance of the join estimation is 
highly affected by the most frequent components, which are typically small in 
number. A high variance is undesirable for accurate estimations. Therefore, we 
treat the frequent items in the stream specially, and can separately track them. A 
skimmed sketch can be constructed by subtracting out the sketch components 
of these frequent items. Finally, the join size can be estimated as a 4-wise 
addition of the join estimation across two pairs of partitions. It has been shown 
that this approach provides superior results because of the reduced variance of 
the estimations from the skimmed sketch. 

4.4 Sketches with p-stable distributions 
In our earlier sections, we did not discuss the effect of the distribution from 

which the random vectors are drawn. While the individual components of the 
random vector were drawn from the normal distribution, this is not the only 
possibility for sketch generation. In this section, we will discuss a special 
set of distributions for the random vectors which are referred to as p-stable 
distributions. A distribution ,C is said to be pstable, if it satisfies the following 
property: 

DEFINITION 9.5 For any set of N i.i.d. random variables X1 . . . XN drawn 
from a p-stable distribution C, and any set of real numbers a1 . . . aN, the random 
variable ( x C 1  ai . x ~ ) / ( c % ~  a;)(l/p) is drawn from L. 

A classic example of the p-stable distribution is the normal distribution with 
p = 2. In general p-stable distributions can be defined for p E (0,2]. 

The use of p-stable distributions has implications in the construction of 
sketches. Recall, that the ith sketch component is of the form Cz1 U j  . r i ,  
where ui is the frequency of the ith distinct value in the data stream. If each 
ri is drawn from a p-stable distribution, then the above sum is also a (scaled) 
p-stable distribution, where the scale coefficient is given by (xCl u;)(lM. 
The ability to use the exact distribution of the sketch provides much stronger 
results than just the use of mean and variance of the sketch components. We 
note that the use of only mean and variance of the sketch components often 
restricts us to the use of generic tail bounds (such as the Chebychev inequality) 
which may not always be tight in practice. However, the knowledge of the 
sketch distribution can potentially provide very tight bounds on the behavior of 
each sketch component. 
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An immediate observation is that the scale coefficient ( ~ z ,  U;)( ' /P) of 
each sketch component is simply the L,-norm of the frequency distribution of 
the incoming items in the data stream. By using 0 ( l 0 ~ ( 1 / 6 ) / ~ ~ )  independent 
sketch components, it is possible to approximate the L, norm within with 
probability at least 1 - 6. We further note that the use of the Lo norm provides 
the number of distinct values in the data stream. It has been shown in [17] that 
by using p 4 0 (small values of p), it is possible to closely approximate the 
number of distinct values in the data stream. 

Other Applications of Sketches. The method of sketches can be used for a 
variety of other applications. Some examples of such applications include the 
problem of heavy hitters [13, 18,76,21], a problem in which we determine the 
most frequent items over data streams. Other problems include those of finding 
significant network differences over data streams [I91 and finding quantiles 
[46,50] over data streams. Another interesting application is that of significant 
differences between data streams [32,33], which has applications in numerous 
change detection scenarios. Another recent application to sketches has been to 
XML and tree-structured data [82,83,87]. In many cases, these synopses can 
be used for efficient resolution of the structured queries which are specified in 
the XQuery pattern-specification language. 

Recently sketch based methods have found considerable applications to ef- 
ficient communication of signals in sensor networks. Since sensors are battery 
constrained, it is critical to reduce the communication costs of the transmission. 
The space efficiency of the sketch computation approach implies that it can also 
be used in the sensor network domain in order to minimize the communication 
costs over different processors. In [22,67,50], it has been shown how to extend 
the sketch method to distributed query tracking in data streams. A particularly 
interesting method is the technique in [22] which reduces the communication 
costs further by using sketch skimming techniques [34], in order to reduce com- 
munication costs further. The key idea is to use models to estimate the future 
behavior of the sketch, and make changes to the sketch only when there are 
significant changes to the underlying model. 

4.5 The Count-Min Sketch 
One interesting variation of the sketching method for data streams is the 

count-min sketch, which uses a hash-based sketch of the stream. The broad ideas 
in the count-min sketch were fist  proposed in [13,29,30]. Subsequently, the 
method was enhanced with pairwise-independent hash functions, formalized, 
and extensively analyzed for a variety of applications in [20]. 

In the count-min sketch, we use rln(l/S)l painvise independent hash func- 
tions, each of which map on to uniformly random integers in the range [0, e l € ] ,  
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where e is the base of the natural logarithm. Thus, we maintain a total of 
[ln(l/S)l hash tables, and there are a total of O(ln(l/S)/e) hash cells. This 
apparently provides a better space complexity than the O(ln(1 16) /e2) bound 
of AMS sketches in [6].  We will discuss more on this point later. 

We apply each hash function to any incoming element in the data stream, and 
add the count of the element to each of the corresponding [ln(l/S)l positions 
in the different hash tables. We note that because of collisions, the hash table 
counts will not exactly correspond to the count of any element in the incoming 
data stream. When incoming frequency counts are non-negative, the hash table 
counts will over-estimate the true count, whereas when the incoming frequency 
counts are either positive or negative (deletions), the hash table count could be 
either an over-estimation or an under-estimation. In either case, the use of the 
median count of the hash position of a given element among the O(ln(1/6)) 
counts provided by the different hash functions provides a estimate which is 
within a 3 . e factor of the L1-norm of element counts with probability at least 
1 - [20]. In other words, if the frequencies of the N different items are 
fl . . . fN, then the estimated frequency of the item i lie between fi - 3 e . xL1 1 f i t  and fi + 3 .  E . xzl [fa 1 with probability at least 1 - The proof 
of this result relies on the fact that the expected inaccuracy of a given entry j 
is at most E - xL1 Ifille, if the hash function is sufficiently uniform. This is 
because we expect the count of other (incorrect) entries which map onto the 
position of j to be '&[l,Nl,iZj fi . e/e for a sufficiently uniform hash function 
with [e/el entries. This is at most equal to e . xL1 I fil/e. By the Markov 
inequality, the probability of this number exceeding 3 e zg1 1 f i l  is less than 
1/ (3 e) < 118. By using the earlier Chernoff bound trick (as in AMS sketches) 
in conjunction with the median selection operation, we get the desired result. 

In the case of non-negative counts, the minimum count of any of the ln(l/S) 
possibilities provides a tighter e-bound (of the L1-norm) with probability at 
least 1 - 6. In this case, the estimated frequency of item i lies between fi and 
fi + e . xz1 fi with probability at least 1 - 6. As in the previous case, the 
expected inaccuracy is e . xE1 file. This is less than the maximum bound by 
a factor of e. By applying the Markov inequality, it is clear that the probability 
that the bound is violated for a given entry is l/e. Therefore, the probability 
that it is violated by all log(1/6) entries is at most ( l / e ) l ~ g ( l / ~ )  = 6. 

For the case of non-negative vectors, the dot product can be estimated by 
computing the dot product on the corresponding entries in the hash table. Each 
of the rln(l/6)1 such dot products is an over estimate, and the minimum of 
these provides an e bound with probability at least 1 - 6. The dot product result 
immediately provides bounds for join size estimation. Details of extending the 
method to other applications such as heavy hitters and quantiles may be found 



A Survey of Synopsis Construction in Data Streams 193 

in [20]. In many of these methods, the time and space complexity is bounded 
above by O(ln(1/6)/~), which is again apparently superior to the AMS sketch. 

As noted in [20], the €-bound in the count-min sketch cannot be directly com- 
pared with that ofthe AMS sketch. This is because the AMS sketch provides the 
€-bound as a function of the L2-norm, whereas the method in [20] provides the 
E-bound only in terms of the L1-norm. The L1-norm can be quadratically larger 
(than the L2-norm) in the most challenging case of non-skewed distributions, 
and the ratio between the two may be as large as a. Therefore, the equivalent 
value of c in the count-min sketch can be smaller than that in the AMS sketch 
by a factor of 0. Since N is typically large, and is in fact the motivation of 
the sketch-based approach, the worst-case time and space complexity of a truly 
equivalent count-min sketch may be signijicantly larger for practical values of 
E .  While this observation has been briefly mentioned in [20], there seems to be 
some confusion on this point in the current literature. This is because of the 
overloaded use of the parameter E, which has different meaning for the AMS 
and count-min sketches. For the skewed case (which is quite common), the 
ratio of the L1-norm to the La-norm reduces. However, since this case is less 
challenging, the general methods no longer remain relevant, and a number of 
other specialized methods (eg. sketch skimming [34]) exist in order to improve 
the experimental and worst-case effectiveness of both kinds of sketches. It 
would be interesting to experimentally compare the count-min and AMS meth- 
ods to find out which is superior in different kinds of skewed and non-skewed 
cases. Some recent results [91] seem to suggest that the count-min sketch is 
experimentally superior to the AMS sketch in terms of maintaining counts of 
elements. On the other hand, the AMS sketch seems to be superior in terms 
of estimating aggregate functions such as the La-norm. Thus, the count-min 
sketch does seem to have a number of practical advantages in many scenarios. 

4.6 Related Counting Methods: Hash Functions for 
Determining Distinct Elements 

The method of sketches is a probabilistic counting method whereby a ran- 
domized h c t i o n  is applied to the data stream in order to perform the counting 
in a space-efficient way. While sketches are a good method to determine large 
aggregate signals, they are not very usehl for counting infrequently occur- 
ring items in the stream. For example, problems such as the determination of 
the number of distinct elements cannot be performed with sketches. For this 
purpose, hash functions turn out to be a useful choice. 

Consider a hash function that renders a mapping from a given word to an 
integer in the range [0, 2L - 11. Therefore, the binary representation of that 
integer will have length L. The position (least significant and rightmost bit is 
counted as 0) of the rightmost 1 -bit of the binary representation of that integer 
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is tracked, and the largest such value is retained. This value is logarithmically 
related to the number of distinct elements [3 11 in the stream. 

The intuition behind this result is quite simple. For a sufficiently uniformly 
distributed hash function, the probability of the ith bit on the right taking on the 
first l-value is simply equal to 2-i-1. Therefore, for N distinct elements, the 
expected number of records taking on the ith bit as the first 1 -value is 2-'-' . N. 
Therefore, when i is picked larger than log(N), the expected number of such 
bitstrings falls off exponentially less than 1. It has been rigorously shown [3 11 
that the expected position of the rightmost bit E[R] is logarithmically related 
to the number of distinct elements as follows: 

The standard deviation a(R) = 1.12. Therefore, the value of R provides an 
estimate for the number of distinct elements N. 

The hash function technique is very useful for those estimations in which 
non-repetitive elements have the same level of importance as repetitive ele- 
ments. Some examples of such functions are those of finding distinct values 
[3 1,431, mining inverse distributions [23], or determining the cardinality of set 
expressions [35]. The method in [43] uses a technique similar to that discussed 
in [3 11 in order to obtain a random sample of the distinct elements. This is then 
used for estimation. In [23], the problem of inverse distributions is discussed, 
in which it is desirable to determine the elements in the stream with a particular 
frequency level. Clearly such an inverse query is made difficult by the fact 
that a query for an element with very low frequency is equally likely to that of 
an element with very high frequency. The method in [23] solves this problem 
using a hash based approach similar to that discussed in [3 11. Another related 
problem is that of finding the number of distinct elements in a join after elim- 
inating duplicates. For this purpose, a join-distinct sketch (or JD-Sketch) was 
proposed in [36], which uses a 2-level adaptation of the hash function approach 
in [31]. 

4.7 Advantages and Limitations of Sketch Based Methods 
One of the key advantages of sketch based methods is that they require space 

which is sublinear in the data size being considered. Another advantage of 
sketch based methods that it is possible to maintain sketches in the presence 
of deletions. This is often not possible with many synopsis methods such as 
random samples. For example, when the ith item with frequency f (i) is deleted, 
the jth component of the sketch can be updated by subtracting f (i) . r i  from it. 
Another advantage of using sketch based methods is that they are extraordinarily 
space efficient, and require space which is logarithmic in the number of distinct 
items in the stream. Since the number of distinct items is significantly smaller 
than the size of the stream itself, this is an extremely low space requirement. 



A Survey of Synopsis Construction in Data Streams 195 

We note that sketches are based on the Lipshitz embeddings, which preserve a 
number of aggregate measures such as the Lp norm or the dot product. However, 
the entire distribution on the data (including the local temporal behavior) are 
not captured in the sketch representation, unless one is willing to work with a 
much larger space requirement. 

Most sketch methods are based on analysis along a single dimensional stream 
of data points. Many problems in the data stream scenario are inherently multi- 
dimensional, and may in fact involve hundreds or thousands of independent and 
simultaneous data streams. In such cases, it is unclear whether sketch based 
methods can be easily extended. While some recent work in [16] provides a few 
limited methods for multi-dimensional queries, these are not easily extensible 
for more general problems. This problem is not however unique to sketch based 
methods. Many other summarization methods such as wavelets or histograms 
can be extended in a limited way to the multi-dimensional case, and do not 
work well beyond dimensionalities of 4 or 5. 

While the concept of sketches is potentially powerful, one may question 
whether sketch based methods have been used for the right problems in the data 
stream domain. Starting with the work in [6], most work on sketches focuses 
on the aggregate frequency behavior of individual items rather than the tempo- 
ral characteristics of the stream. Some examples of such problems are those 
of finding the frequent items, estimation of frequency moments, and join size 
estimation. The underlying assumption of these methods is an extremely large 
domain size of the data stream. The actual problems solved (aggregate fie- 
quency counts, join size estimation, moments) are relatively simple for modest 
domain sizes in many practical problems over very fast data streams. In these 
cases, temporal information in terms of sequential arrival of items is aggregated 
and therefore lost. Some sketch-based techniques such as those in [61] perform 
temporal analysis over specific time windows. However, this method has much 
larger space requirements. It seems to us that many of the existing sketch based 
methods can be easily extended to the temporal representation of the stream. It 
would be interesting to explore how these methods compare with other synopsis 
methods for temporal stream representation. 

We note that the problem of aggregate frequency counts is made difficult 
only by the assumption of very large domain sizes, and not by the speed of 
the stream itself. It can be argued that in most practical applications, the data 
stream itself may be very fast, but the number of distinct items in the stream 
may be of manageable size. For example, a motivating application in [44] uses 
the domain of call frequencies of phone records, an application in which the 
number of distinct items is bounded above by the number of phone numbers of 
a particular phone company. With modem computers, it may even be possible 
to hold the frequency counts of a few million distinct phone numbers in a main 
memory array. In the event that main memory is not sufficient, many efficient 



196 DATA STREAMS: MODELS AND ALGORITHMS 

disk based index structures may be used to index and update frequency counts. 
We argue that many applications in the sketch based literature which attempts to 
find specific properties of the frequency counts (eg. second moments, join size 
estimation, heavy hitters) may in fact be implemented trivially by using simple 
main memory data structures, and the ability to do this will only increase over 
time with hardware improvements. There are however a number of applica- 
tions in which hardware considerations make the applications of sketch based 
methods very useful. In our view, the most fruitful applications of sketch based 
methods lie in its recent application to the sensor network domain, in which 
in-network computation, storage and communication are greatly constrained by 
power and hardware considerations [22,67,68]. Many distributed applications 
such as those discussed in [9,24,70,80] are particularly suited to this approach. 

5. Histograms 
Another key method for data summarization is that of histograms. In the 

method of histograms, we essentially divide the data along any attribute into a set 
of ranges, and maintain the count for each bucket. Thus, the space requirement 
is defined by the number of buckets in the histogram. A naive representation 
of a histogram would discretize the data into partitions of equal length (equi- 
width partitioning) and store the frequencies of these buckets. At this point, we 
point out a simple connection between the histogram representation and Haar 
wavelet coefficients. If we construct the wavelet representation of the frequency 
distribution of a data set along any dimension, then the (non-normalized) Haar 
coefficients of any order provide the difference in relative frequencies in equi- 
width histogram buckets. Haar coefficients of different orders correspond to 
buckets of different levels of granularity. 

It is relatively easy to use the histogram for answering different kinds of 
queries such as range queries, since we only need to determine the set of buckets 
which lie within the user specified ranges [69,81]. A number of strategies can 
be devised for improved query resolution from the histogram [69,8 1, 84, 851. 

The key source of inaccuracy in the use of histograms is that the distribution 
of the data points within a bucket is not retained, and is therefore assumed to be 
uniform. This causes inaccuracy because of extrapolation at the query bound- 
aries which typically contain only a fractional part of a histogram. Thus, an 
important design consideration in the construction of histograms is the determi- 
nation of how the buckets in the histogram should be designed. For example, if 
each range is divided into equi-width partitions, then the number of data points 
would be distributed very unequally across different buckets. If such buck- 
ets include the range boundary of a query, this may lead to inaccurate query 
estimations. 
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Therefore, a natural choice is to pick equi-depth buckets, in which each range 
contains an approximately equal number of points. In such cases, the maximum 
inaccuracy of a query is equal to twice the count in any bucket. However, in 
the case of a stream, the choice of ranges which would result in equi-depth 
partitions is not known a-priori. We note that the design of equi-depth buckets 
is exactly the problem of quantile estimation in data streams, since the equi- 
depth partitions define different quantiles in the data. 

A different choice for histogram construction is that of minimizing the fie- 
quency variance of the different values within a bucket, so that the uniform 
distribution assumption is approximately held for queries. This minimizes the 
boundary error of extrapolation in a query. Thus, if a bucket B with count 
C(B)  contains the frequency of 1 ( B )  elements, then average frequency of each 
element in the bucket is C ( B )  11 (B) .  Let f  . . . f l ( B )  be the frequencies of the 1 
values within the bucket. Then, the total variance v(B)  of the frequencies from 
the average is given by: 

Then, the total variance V across all buckets is given by the following: 

Such histograms are referred to as VOptimal histograms. A different way of 
looking at the V-optimal histogram is as a least squares fit to the frequency 
distribution in the data. Algorithms for V-Optimal histogram construction have 
been proposed in [60, 631. We also note that the objective function to be op- 
timized has the form of an Lp-difference function between two vectors whose 
cardinality is defined by the number of distinct values. In our earlier observa- 
tions, we noted that sketches are particularly useful in tracking such aggregate 
functions. This is particularly useful in the multi-dimensional case, where the 
number of buckets can be very large as a result of the combination of a large 
number of dimensions. Therefore sketch-based methods can be used for the 
multi-dimensional case. We will discuss this in detail slightly later. We note 
that a number of other objective functions also exist for optimizing histogram 
construction [86]. For example, one can minimize the difference in the area 
between the original distribution, and the corresponding histogram fit. Since 
the space requirement is dictated by the number of buckets, it is also desirable to 
minimize it. Therefore, the dual problem of minimizing the number of buckets, 
for a given threshold on the error has been discussed in [63,78]. 

One problem with the above definitions is that they use they use absolute 
errors in order to define the accuracy. It has been pointed out in [73] that the 
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use of absolute error may not always be a good representation of the error. 
Therefore, some methods for optimizing relative error have been proposed in 
[53]. While this method is quite efficient, it is not designed to be a data stream 
algorithm. Therefore, the design of relative error histogram construction for 
the stream case continues to be an open problem. 

5.1 One Pass Construction of Equi-depth Histograms 
In this section, we will develop algorithms for one-pass construction of equi- 

depth histograms. The simplest method for determination of the relevant quan- 
tiles in the data is that of sampling. In sampling, we simply compute the 
estimated quantile q(S) E [O,1] of the true quantile q E [0, 11 on a random 
sample S of the data. Then, the Hoeffding inequality can be used to show 
that q(S) lies in the range (q - E, q + E) with probability at least 1 - 6, if the 
sample size S is chosen larger than o ( log (S) /~~) .  Note that this sample size is 
a constant, and is independent of the size of the underlying data stream. 

Let v be the value of the element at quantile q. Then the probability of includ- 
ing an element in S with value less than v is a Bernoulli trial with probability q. 
Then the expected number of elements less than v is q . IS[, and this number lies 
in the interval (qf E) with probability at least 2 e-2'1S1"2 (Hoeffding inequal- 
ity). By picking a value of IS I = 0 (log (6) /c2), the corresponding results may 
be easily proved. A nice analysis of the effect of sample sizes on histogram con- 
struction may be found in [12]. In addition, methods for incremental histogram 
maintenance may be found in [42]. The 0 (log(6) /c2) space-requirements have 
been tightened to O(log(S)/~) in a variety of ways. For example, the algorithms 
in [71,72] discuss probabilistic algorithms for tightening this bound, whereas 
the method in [49] provides a deterministic algorithm for the same goal. 

5.2 Constructing V-Optimal Histograms 
An interesting offline algorithm for constructing V-Optimal histograms has 

been discussed in [63]. The central idea in this approach is to set up a dynamic 
programming recursion in which the partition for the last bucket is determined. 
Let us consider a histogram drawn on the N ordered distinct values [ I .  . . N]. 
Let Opt(k, N)  be the error of the V-optimal histogram for the first N values, 
and k buckets.Let Var (p, q) be the variances of values indexed by p through q 
in (1 . . . N). Then, if the last bucket contains values r . . . N, then the error of 
the V-optimal histogram would be equal to the sum of the error of the (k - 1)- 
bucket V-optimal histogram for values up to r - 1, added to the error of the last 
bucket (which is simply the variance of the values indexed by r through N). 
Therefore, we have the following dynamic programming recursion: 

Opt(k, N )  = m&{Opt(k - 1, r - 1) + Var(r, N)) (9.19) 
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We note that there are O(N . k) entries for the set Opt(lc, N), and each entry can 
be computed in O(N) time using the above dynamic programming recursion. 
Therefore, the total time complexity is O(N2 . k). 

While this is a neat approach for offline computation, it does not really 
apply to the data stream case because of the quadratic time complexity. In 
1541, a method has been proposed to construct (1 + €)-optimal histograms 
in O(N . lc2 log(N) /~)  time and O(k2 . log(N)/e) space. We note that the 
number of buckets L is typically small, and therefore the above time complexity 
is quite modest in practice. The central idea behind this approach is that the 
dynamic programming recursion of Equation 9.19 is the sum of a monotonically 
increasing and a monotonically decreasing function in r. This can be leveraged 
to reduce the amount of search in the dynamic programming recursion, if one 
is willing to settle for a (1 + E)-approximation. Details may be found in [54]. 
Other algorithms for V-optimal histogram construction may be found in [47, 
56, 571. 

5.3 Wavelet Based Histograms for Query Answering 
Wavelet Based Histograms are a useful tool for selectivity estimation, and 

were first proposed in [73]. In this approach, we construct the Haar wavelet 
decomposition on the cumulative distribution of the data. We note that for a 
dimension with N distinct values, this requires N wavelet coefficients. As is 
usually the case with wavelet decomposition, we retain the B Haar coefficients 
with the largest absolute (normalized) value. The cumulative distribution 0(b) 
at a given value b can be constructed as the sum of O(log(N)) coefficients on the 
error-tree. Then for a range query [a, b], we only need to compute 0(b) - @(a). 

In the case of data streams, we would like to have the ability to maintain the 
wavelet based histogram dynamically. In this case, we perform the maintenance 
with frequency distributions rather than cumulative distributions. We note that 
when a new data stream element x arrives, the frequency distribution along a 
given dimension gets updated. This can lead to the following kinds of changes 
in the maintained histogram: 

Some of the wavelet coefficients may change and may need to be updated. 
An important observation here is that only the O(log(N)) wavelet coef- 
ficients whose ranges include x may need to be updated. We note that 
many of these coefficients may be small and may not be included in the 
histogram in the first place. Therefore, only those coefficients which are 
already included in the histogram need to be updated. For a coefficient 
including a range of length 1 = 29 we update it by adding or subtract- 
ing 111. We first update all the wavelet coefficients which are currently 
included in the histogram. 
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Some of the wavelet coefficients which are currently not included in the 
histogram may become large, and may therefore need to be added to it. 
Let c,i, be the minimum value of any coefficient currently included in 
the histogram. For a wavelet coefficient with range 1 = 29, which is 
not currently included in the histogram, we add it to be histogram with 
probability 1/(1* hi,). The initial value of the coefficient is set to hi,. 

The addition of new coefficients to the histogram will increase the total 
number of coefficients beyond the space constraint B. Therefore, after 
each addition, we delete the minimum coefficient in the histogram. 

The correctness of the above method follows fiom the probabilistic counting 
results discussed in [3 11. It has been shown in [74] that this probabilistic method 
for maintenance is effective in practice. 

5.4 Sketch Based Methods for Multi-dimensional 
Histograms 

Sketch based methods can also be used to construct V-optimal histograms 
in the multi-dimensional case [90]. This is a particularly useful application 
of sketches since the number of possible buckets in the N~ space increases 
exponentially with d. Furthermore, the objective function to be optimized has 
the form of an L2-distance function over the different buckets. This can be 
approximated with the use of the Johnson-Lindenstrauss result [64]. 

We note that each d-dimensional vector can be sketched over  space 
using the same method as the AMS sketch. The only difference is that we 
are associating the 4-wise independent random variables with d-dimensional 
items. The Johnson-Lindenstrauss Lemma implies that the La-distances in the 
sketched representation (optimized over O(b . d log(N)/e2) possibilities) are 
within a factor (1 + c) of the Lz-distances in the original representation for a 
b-bucket histogram. 

Therefore, if we can pick the buckets so that La-distances are optimized 
in the sketched representation, this would continue to be true for the original 
representation within factor (1 + 6 ) .  It turns out that a simple greedy algorithm 
is sufficient to achieve this. In this algorithm, we pick the buckets greedily, 
so that the L2 distances in the sketched representation are optimized in each 
step. It can be shown [90], that this simple approach provides a near optimal 
histogram with high probability. 

6. Discussion and Challenges 
In this paper, we provided an overview of the different methods for syn- 

opsis construction in data streams. We discussed random sampling, wavelets, 
sketches and histograms. In addition, many techniques such as clustering can 
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also be used for synopses construction. Some of these methods are discussed in 
more detail in a different chapter of this book. Many methods such as wavelets 
and histograms are closely related to one another. This chapter explores the 
basic methodology of each technique and the connections between different 
techniques. Many challenges for improving synopsis construction methods 
remain: 

While many synopses construction methods work effectively in indi- 
vidual scenarios, it is as yet unknown how well the different methods 
compare with one another. A thorough performance study needs to be 
conducted in understanding the relative behavior of different synopsis 
methods. One important point to be kept in mind is that the "trusty-old" 
sampling method provides the most effective results in many practical 
situations, where space is not constrained by specialized hardware con- 
siderations (such as a distributed sensor network). This is especially true 
for multi-dimensional data sets with inter-attribute correlations, in which 
methods such as histograms and wavelets become increasingly ineffec- 
tive. Sampling is however ineffective in counting measures which rely 
on infrequent behavior of the underlying data set. Some examples are 
distinct element counting and join size estimation. Such a study may 
reveal the importance and robustness of different kinds of methods in a 
wide variety of scenarios. 

A possible area ofresearch is in the direction of designing workload aware 
synopsis construction methods [75, 78, 791. While many methods for 
synopsis construction optimize average or worst-case performance, the 
real aim is to provide optimal results for typical workloads. This requires 
methods for modeling the workload as well as methods for leveraging 
these workloads for accurate solutions. 

Most synopsis structures are designed in the context of quantitative or 
categorical data sets. It would be interesting to examine how synopsis 
methods can be extended to the case of different kinds of domains such as 
string, text or XML data. Some recent work in this direction has designed 
methods for XCluster synopsis or sketch synopsis for XML data [82,83, 
871. 

Most methods for synopsis construction focus on construction of optimal 
synopsis over the entire data stream. In many cases, data streams may 
evolve over time, as a result of which it may be desirable to construct 
optimal synopsis over specific time windows. Furthermore, this window 
may not be known in advance. This problem may be quite challenging to 
solve in a space-efficient manner. A number of methods for maintaining 
exponential histograms and time-decaying stream aggregates [15, 481 
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try to account for evolution of the data stream. Some recent work on 
biased reservoir sampling [4] tries to extend such an approach to sampling 
methods. 

We believe that there is considerable scope for extension of the current synopsis 
methods to domains such as sensor mining in which the hardware requirements 
force the use of space-optimal synopsis. However, the objective of constructing 
a given synopsis needs to be carefully calibrated in order to take the specific 
hardware requirements into account. While the broad theoretical foundations 
of this field are now in place, it remains to carefully examine how these methods 
may be leveraged for applications with different kinds of hardware, computa- 
tional power, or space constraints. 
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1. Introduction 
Given the fundamental role played by joins in querying relational databases, 

it is not surprising that stream join has also been the focus of much research on 
streams. Recall that relational (theta) join between two non-streaming relations 
R1 and R2, denoted RlweR2, returns thesetofallpairs ( r l ,  r2), whererl E R1, 
7-2 E R2, and the join condition 8(rl, r2) evaluates to true. A straightforward 
extension of join to streams gives the following semantics (in rough terms): 
At any time t ,  the set of output tuples generated thus far by the join between 
two streams S1 and S2 should be the same as the result of the relational (non- 
streaming) join between the sets of input tuples that have arrived thus far in S1 
and sz. 

Stream join is a fbndamental operation for relating information from different 
streams. For example, given two stream of packets seen by network monitors 
placed at two routers, we can join the streams on packet ids to identify those 
packets that flowed through both routers, and compute the time it took for each 
such packet to reach the other router. As another example, an online auction 
system may generate two event streams: One signals opening of auctions and 
the other contains bids on the open auctions. A stream join is needed to relate 
bids with the corresponding open-auction events. As a third example, which 
involves a non-equality join, consider two data streams that arise in monitoring 
a cluster machine room, where one stream contains load information collected 
from different machines, and the other stream contains temperature readings 
from various sensors in the room. Using a stream join, we can look for possible 
correlations between loads on machines and temperatures at different locations 
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in the machine room. In this case, we need to relate temperature readings and 
load data with close, but necessarily identical, spatio-temporal coordinates. 

What makes stream join so special to warrant new approaches different fiom 
conventional join processing? In the stream setting, input tuples arrive contin- 
uously, and result tuples need to be produced continuously as well. We cannot 
assume that the input data is already stored or indexed, or that the input rate 
can be controlled by the query plan. Standard join algorithms that use block- 
ing operations, e.g., sorting, no longer work. Conventional methods for cost 
estimation and query optimization are also inappropriate, because they assume 
finite input. Moreover, the long-running nature of stream queries calls for more 
adaptive processing strategies that can react to changes and fluctuations in data 
and stream characteristics. The "stateful" nature of stream joins adds another 
dimension to the challenge. In general, in order to compute the complete result 
of a stream join, we need to retain all past arrivals as part of the processing state, 
because a new tuple may join with an arbitrarily old tuple arrived in the past. 
This problem is exacerbated by unbounded input streams, limited processing 
resources, and high performance requirements, as it is impossible in the long 
run to keep all past history in fast memory. 

This chapter provides an overview ofresearch problems, recent advances, and 
future research directions in stream join processing. We start by elucidating 
the model and semantics for stream joins in Section 2. Section 3 focuses 
on join state management-the important problem of how to cope with large 
and potentially unbounded join state given limited memory. Section 4 covers 
fundamental algorithms for stream join processing. Section 5 discusses aspects 
of stream join optimization, including objectives and techniques for optimizing 
multi-way joins. We conclude the chapter in Section 6 by pointing out several 
related research areas and proposing some directions for future research. 

2. Model and Semantics 
Basic Model and Semantics. A stream is an unbounded sequence of 
stream tuples of the form (s, t)  ordered by t, where s is a relational tuple and 
t is the timestamp of the stream tuple. Following a "reductionist" approach, 
we conceptually regard the (unwindowed) stream join between streams S1 and 
S2 to be a view defined as the (bag) relational join between two append-only 
bags S1 and S2. Whenever new tuples arrive in S1 or S2, the view must be 
updated accordingly. Since relational join is monotonic, insertions into S1 and 
S2 can result only in possible insertions into the view. The sequence ofresulting 
insertions into the view constitutes the output stream of the stream join between 
S1 and S2. The timestamp of an output tuple is the time at which the insertion 
should be reflected in view, i.e., the larger of the timestamps of the two input 
tuples. 
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Alternatively, we can describe the same semantics operationally as follows: 
To compute the stream join between S1 and S2, we maintain a join state con- 
taining all tuples received so far from S1 (which we call Sl 's join state) and 
those from S2 (which we call Sz's join state). For each new tuple sl arriving in 
S1, we record sl in Sl 's join state, probe S2 'S join state for tuples joining with 
s l ,  and output the join result tuples. New tuples arriving in S2 are processed in 
a symmetrical fashion. 

Semantics of Sliding-Window Joins. An obvious issue with unwindowed 
stream joins is that the join state is unbounded and will eventually outgrow 
memory and storage capacity of the stream processing system. One possibility 
is to restrict the scope of the join to a recent window, resulting in a sliding- 
window stream join. For binary joins, we call the two input streams partner 
stream of each other. Operationally, a time-based sliding window of duration 
w on stream S restricts each new partner stream tuple to join only with S tuples 
that arrived within the last w time units. A tuple-based sliding window of size k 
restricts each new partner stream tuple to join only with the last k tuples arrived 
in S. Both types of windows "slide" forward, as time advances or new stream 
tuples arrive, respectively. The sliding-window semantics enables us to purge 
from the join state any tuple that has fallen out of the current window, because 
future arrivals in the partner stream cannot possibly join with them. 

Continuous Query Language, or CQL for short [2], gives the semantics of 
a sliding-window stream join by regarding it as a relational join view over 
the sliding windows, each of which contains the bag of tuples in the current 
window of the respective stream. New stream tuples are treated as insertion 
into the windows, while old tuples that fall out of the windows are treated as 
deletions. The resulting sequences of updates on the join view constitutes the 
output stream of the stream join. Note that deletions from the windows can 
result in deletions from the view. Therefore, sliding-window stream joins are 
not monotonic. The presence of deletions in the output stream does complicate 
semantics considerably. Fortunately, in many situations users may not care 
about these deletions at all, and CQL provides an Istream operator for remov- 
ing them from the output stream. For a time-based sliding-window join, even 
if we do not want to ignore deletions in the output stream, it is easy to infer 
when an old output tuple needs to be deleted by examining the timestamps of 
the input tuples that generated it. For this reason, time-based sliding-window 
join under the CQL semantics is classified as a weak non-monotonic operator 
by Golab and 0zsu [24]. However, for a tuple-based sliding-window join, how 
to infer deletions in the output stream timely and efficiently without relying on 
explicitly generated "negative tuples" still remains an open question [24]. 

There is an alternative definition of sliding-window stream joins that does 
not introduce non-monotonicity. For a time-based sliding-window join with 
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duration w, we simply regard the stream join between S1 and S2 as a relational 
join view over append-only bags S1 and S2 with an extra "window join con- 
dition": -w < S1.t - S2.t 5 W. AS in the case of an unwindowed stream 
join, the output stream is simply the sequence of updates on the view resulting 
from the insertions into S1 and S2. Despite the extra window join condition, 
join remains monotonic; deletions never arise in the output stream because S1 
and S2 are append-only. This definition of time-based sliding-window join has 
been used by some, e.g., [lo, 271. It is also possible to define a tuple-based 
sliding-window join as a monotonic view over append-only bags (with the help 
of an extra attribute that records the sequence number for each tuple in an input 
stream), though the definition is more convoluted. This alternative semantics 
yields the same sequence of insertions as the CQL semantics. In the remainder 
of this chapter, we shall assume this semantics and ignore the issue of deletions 
in the output stream. 

Relaxations and Variations of the Standard Semantics. The semantics of 
stream joins above requires the output sequence to reflect the complete sequence 
of states of the underlying view, in the exact same order. In some settings this 
requirement is relaxed. For example, the stream join algorithms in [27] may 
generate output tuples slightly out of order. The XJoin-family of algorithms 
(e.g., [41,33,38]) relaxes the single-pass stream processing model and allows 
some tuples to be spilled out from memory and onto disk to be processed later, 
which means that output tuples may be generated out of order. In any case, 
the correct output order can be reconstruct from the tuple timestamps. Besides 
relaxing the requirement on output ordering, there are also variations of sliding 
windows that offer explicit control over what states of the view can be ignored. 
For example, with the "jumping window" semantics [22], we divide the sliding 
window into a number of sub-windows; when the newest sub-window fills up, 
it is appended to the sliding window while the oldest sub-window in the sliding 
window is removed, and then the query is re-evaluated. This semantics induces 
a window that is "jumping" periodically instead of sliding gradually. 

Semantics of Joins between Streams and Database Relations. Joins 
between streams and time-varying database relations have also been consid- 
ered [2, 241. Golab and 0zsu [24] proposed a non-retroactive relation se- 
mantics, where each stream tuple joins only with the state of the time-varying 
database relation at the time of its arrival. Consequently, an update on the 
database relation does not retroactively apply to previously generated output 
tuples. This semantics is also supported by CQL [2], where the query can be 
interpreted as a join between the database relation and a zero-duration sliding 
window over the stream containing only those tuples arriving at the current 
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time. We shall assume this semantics in our later discussion on joining streams 
and database relations. 

3. State Management for Stream Joins 
In this section, we turn specifically to the problem of state management for 

stream joins. As discussed earlier, join is stateful operator; without the sliding- 
window semantics, computing the complete result of a stream join generally 
requires keeping unbounded state to remember all past tuples [I]. The question 
is: What is the most effective use of the limited memory resource? How do we 
decide what part of the join state to keep and what to discard? Can we mitigate 
the problem by identifying and purging "useless" parts of the join state without 
affecting the completeness of the result? When we run out of memory and are 
no longer able to produce the complete result, how do we then measure the 
"error" in an incomplete result, and how do we manage the join state in a way 
to minimize this error? 

Join state management is also relevant even for sliding-window joins, where 
the join state is bounded by the size of the sliding windows. Sometimes, slid- 
ing windows may be quite large, and any fkther reduction of the join state is 
welcome because memory is often a scarce resource in stream processing sys- 
tems. Moreover, if we consider a more general stream processing model where 
streams are processed not just in fast main memory but instead in a memory 
hierarchy involving smaller, faster caches as well as larger, slower disks, join 
state management generalizes into the problem of deciding how to ferry data 
up and down the memory hierarchy to maximize processing efficiency. 

One effective approach towards join state management is to exploit "hard" 
constraints in the input streams to reduce state. For example, we might know 
that for a stream, the join attribute is a key, or the value of the join attribute 
always increases over time. Through reasoning with these constraints and the 
join condition, we can sometimes infer that certain tuples in the join state 
cannot contribute to any future output tuples. Such tuples can then be purged 
from the join state without compromising result completeness. In Section 3.1, 
we examine two techniques that generalize constraints in the stream setting and 
use them for join state reduction. 

Another approach is to exploit statistical properties of the input streams, 
which can be seen as "soft" constraints, to help make join state management 
decisions. For example, we might know (or have observed) that the frequency 
of each join attribute value is stable over time, or that the join attribute values in 
a stream can be modeled by some stochastic process, e.g., random walk. Such 
knowledge allows us to estimate the benefit of keeping a tuple in the join state 
(for example, as measured by how many output tuples it is expected to generate 
over a period of time). Because of the stochastic nature of such knowledge, we 
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usually cannot guarantee result completeness. However, this approach can be 
used to minimize the expected error in the incomplete result, or to optimize the 
organization of the join state in a memory hierarchy to maximize performance. 
We discuss this approach in Section 3.2. 

3.1 Exploiting Constraints 
Ic-Constraints. Babu et al. [7] introduced k-constraints for join state 
reduction. The parameter k is an adherence parameter that specifies how 
closely a stream adheres to the constraint. As an example of k-constraints, 
consider first a "strict" ordered-arrival constraint on stream S, which requires 
that the join attribute values of S tuples never decrease over time. In a network 
monitoring application, a stream of TCP/IP packets transmitted fiom a source 
to a destination should arrive in the order of their source timestamps (denoted by 
t, to distinguish them from the tuple timestamps t). However, suppose that for 
efficiency, we instead use UDP, a less reliable protocol with no guarantee on the 
delivery order. Nonetheless, if we can bound the extent of packet reordering 
that occur in practice, we can relax the constraint into an ordered-arrival k- 
constraint: For any tuple s, a tuple st with an earlier source timestamp (i.e., 
st& < s.t,) must arrive as or before the k-th tuple following s. A smaller k 
implies a tighter constraint; a constraint with k = 0 becomes strict. 

To see how k-constraints can be used for join state reduction, suppose we 
join the packet stream S in the above example with another stream St using 
the condition JS.t, - S'.t,l 5 10. Without any constraint on S.t,, we must 
remember all St tuples in the join state, because any future S tuple could arrive 
with a joining t, value. With the ordered-arrival k-constraint on S.t,, however, 
we can purge a tuple st E St from the join state as soon as k tuples have arrived 
in S following some S tuple with t, > st& + 10. The reason is that the 
k-constraint guarantees any subsequent S tuples will have source timestamps 
strictly greater than st& + 10 and therefore not join with st. Other k-constraints 
considered by [7] include generalizations of referential integrity constraints and 
clustered-arrival constraints. 

Although k-constraints provide some "slack" through the adherence param- 
eter k, strictly speaking they are still hard constraints in that we assume the 
conditions must hold strictly after k arrivals. Babu et al. also developed tech- 
niques for monitoring streams for k-constraints and determining the value of k 
at runtime. Interestingly, k-constraints with dynamically observed k become 
necessarily soft in nature: They can assert that the constraints hold with high 
probability, but cannot guarantee them with absolute certainty. 

Punctuations. In contrast to k-constraints, whose forms are known a 
priori, punctuations, introduced by Tucker et al. [40], are constraints that are 
dynamically inserted into a stream. Specifically, a punctuation is a tuple of 
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patterns specifying a predicate that must evaluate to false for all future data tu- 
ples in the stream. For example, consider an auction system with two streams: 
Auction(id, info, t )  generates a tuple at the opening of each auction (with a 
unique auction id), and Bid (auction-id, price, t )  contains bids for open auc- 
tions. When an auction with id ai closes, the system inserts a punctuation 
(ai, *) into the Bid stream to signal that there will be no more bids for auction 
ai. Also, since auction ids are unique, following the opening of every auction 
aj, the system can also insert a punctuation (aj ,  *) into Auction to signal that 
will be no other auctions with the same id. 

Ding et al. [17] developed a stream join algorithm called PJoin to exploit 
punctuations. When a punctuation arrives in a stream, PJoin examines the join 
state of the partner stream and purges those tuples that cannot possibly join with 
future arrivals. For example, upon the arrival of a punctuation (ai, *) in Bid, 
we can purge any Auction tuples in the join state with id ai (provided that they 
have already been processed for join with all past Bid tuples). PJoin also prop- 
agates punctuations to the output stream. For example, after receiving (ai, *) 
from both input streams, we can propagate (ai, *, *) to the output, because we 
are sure that no more output tuple with ai can be generated. Punctuation prop- 
agation is important because propagated punctuations can be further exploited 
by downstream operators that receive the join output stream as their input. Ding 
and Rundensteiner [18] further extended their join algorithm to work with slid- 
ing windows, which allow punctuations to be propagated quicker. For example, 
suppose that we set the sliding window to 24 hours, and 24 hours have past af- 
ter we saw punctuation (ai, *) from Auction. Even if we might not have seen 
(ai, *) yet from Bid, in this case we can still propagate (ai, *, *) to the output, 
because future Bid tuples cannot join with an Auction tuple that has already 
fallen outside the sliding window. 

While punctuations are more flexible and generally more expressive than Ic- 
constraints, they do introduce some processing overhead. Besides the overhead 
of generating, processing, and propagating punctuations, we note that some past 
punctuations need to be retained as part of the join state, thereby consuming 
more memory. For stream joins, past punctuations cannot be purgeduntil we can 
propagate them, so it is possible to accumulate many punctuations. Also, not all 
punctuations are equally effective in join state reduction, and their effectiveness 
may vary for different join conditions. We believe that further research on the 
trade-off between the cost and the benefit of punctuations is needed, and that 
managing the "punctuation state" poses an interesting problem parallel to join 
state management itself. 
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3.2 Exploiting Statistical Properties 
Strictly speaking, both k-constraints and punctuations are hard constraints. 

Now, we explore how to exploit "soft" constraints, or statistical properties of 
input streams, in join state management. Compared with hard constraints, these 
soft constraints can convey more information relevant to join state management. 
For example, consider again the UDP packet stream discussed in Section 3.1. 
Depending on the characteristics of the communication network, k may need to 
be very large for the ordered-arrival k-constraint to hold. However, it may turn 
out that 99% of the time the extent of packet reordering is limited to a much 
smaller kt, and that 80% of the time reordering is limited to an even smaller k". 
Soft, statistical constraints are better at capturing these properties and enabling 
optimization based on common cases rather than the worst case. 

Given a limited amount of memory to hold the join state, for each incoming 
stream tuple, we need to make a decision-not unlike a cache replacement 
decision-about whether to discard the new tuple (after joining it with the 
partner stream tuples in the join state) or to retain it in the join state; in the latter 
case, we also need to decide which old tuple to discard from the join state to 
make space for the new one. In the following, we shall use the term "cache" to 
refer to the memory available for keeping the join state. 

Before we proceed, we need to discuss how to evaluate a join state manage- 
ment strategy. There are two major perspectives, depending on the purpose of 
join state management. The first perspective assumes the single-pass stream 
processing model where output tuples can be produced only from the part of the 
join state that we choose to retain in cache. In this case, our goal is to minimize 
the error in (or to maximize the quality of) the output stream compared with the 
complete result. A number of popular measures have been defined from this 
perspective: 

Max-subset. This measure, introduced by Das et al. [15], aims at pro- 
ducing as many output tuples as possible. (Note that any reasonable 
stream join algorithm would never produce any incorrect output tuples, 
so we can ignore the issue of false positives.) Because input streams are 
unbounded, we cannot compare two strategies simply by comparing the 
total numbers of output tuples they produce-both may be infinite. The 
approach taken by Srivastava and Widom [37] is to consider the ratio 
between the number of output tuples produced up to some time t and the 
number of tuples in the complete result up to t. Then, a reasonable goal 
is to maximize this ratio as t tends to infinity. 

Sampling rate. Like max-subset, this measure aims at producing as many 
output tuples as possible, but with the additional requirement that the set 
of output tuples constitutes a uniform random sample of the complete join 
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result. Thus, the goal is to maximize the sampling rate. This measure is 
first considered in the stream join setting by [37]. 

m Application-dejned importance. This measure is based on the notion 
of importance specific to application needs. For example, Aurora [39] 
allows applications to define value-based quality-of-service functions that 
spec@ the utilities of output tuples based on their attribute values. The 
goal in this case is to maximize the utility of the join result. 

The second perspective targets expected performance rather than result com- 
pleteness. This perspective relaxes the single-pass processing model by allow- 
ing tuples to be spilled out from memory and onto disk to be processed later 
in "mop-up" phases. Assuming that we still produce the complete answer, 
our goal is to minimize the total processing cost of the online and the mop- 
up phases. One measure defined from this perspective is the archive metric 
proposed by [15]. This measure has also been used implicitly by the XJoin- 
family of algorithms ([41, 33, 381, etc.). As it is usually more expensive to 
process tuples that have been spilled out to disk, a reasonable approximation is 
to try to leave as little work as possible to the mop-up phases; this goal roughly 
compatible with max-subset's objective of getting as much as possible done 
online. 

In the remainder of this section, we focus first and mostly on the max-subset 
measure. Besides being a reasonable measure in its own right, techniques de- 
veloped for max-subset are roughly in line with the archive metric, and can 
be generalized to certain application-defined importance measures through ap- 
propriate weighting. Next, we discuss the connection between classic caching 
and join state management, and state management for joins between streams 
and database relations. Finally, we briefly discuss the sampling-rate measure 
towards the end of this section. 

Max-Subset Measure. Assuming perfect knowledge of the future arrivals 
in the input streams, the problem of finding the optimal sequence (up to a given 
time) ofjoin state management decisions under max-subset can be cast as a net- 
work flow problem, and can be solved offline in time polynomial to the length 
of the sequence and the size of the cache [15]. In practice, however, we need 
an online algorithm that does not have perfect knowledge of the future. Unfor- 
tunately, without any knowledge (statistical or otherwise) of the input streams, 
no online algorithm-not even a randomized o n v c a n  be k-competitive (i.e., 
generating at least l / k  as many tuples as an optimal offline algorithm) for any k 
independent of the length of the input streams [37]. This hardness result high- 
lights the need to exploit statistical properties of the input streams. Next, we 
review previous work in this area, starting with specific scenarios and ending 
with a general approach. 
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Frequency-Based Model. In the frequency-based model, the join at- 
tribute value of each new tuple arriving in a stream is drawn independently 
from a probability distribution that is stationary (i.e., it does not change over 
time). This model is made explicit by [37] and discussed as special case by 1451, 
although it has been implicitly assumed in the development of many join state 
management techniques. Under this model, assuming an unwindowed stream 
equijoin, we can calculate the benefit of a tuple s as the product of the partner 
stream arrival rate and the probability that a new partner stream tuple has the 
same join attribute value as s. This benefit measures how many output tuples s 
is expected to generate per unit time in the fbture. A straightforward strategy 
is to replace the tuple with the lowest benefit. This strategy, called PROB, 
was proposed by [15], and can be easily shown to be optimal for unwindowed 
joins. For sliding-window joins, an alternative strategy called LIFE was pro- 
posed, which weighs a tuple's benefit by its remaining lifetime in the sliding 
window. Unfortunately, neither PROB nor LlFE is known to be optimal for 
sliding-window joins. To illustrate, suppose that we are faced with the choice 
between two tuples sl and s2, where sl has a higher probability ofjoining with 
an incoming tuple, but s 2  has a longer lifetime, allowing it to generate more 
output tuples than s 2  eventually. PROB would prefer sl while LlFE would 
prefer s2; however, neither choice is always better, as we will see later in this 
section. 

The frequency-based model is also implicitly assumed by [38] in developing 
the RPJ  (rate-based progressive join) algorithm. RPJ stores the in-memory 
portion of each input stream's join state as a hash table, and maintains necessary 
statistics for each hash partition; statistics for individual join attribute values 
within each partition are computed assuming local uniformity. When RPJ 
runs out of memory, it flushes the partition with lowest benefit out to disk. This 
strategy is analogous to PROB. 

Kang et al. [30] assumed a simplified version of the frequency-based model, 
where each join attribute value occurs with equal frequency in both input streams 
(though stream arrival rates may differ). With this simplification, the optimal 
strategy is to prefer keeping the slower stream in memory, because the tuples 
from the slower stream get more opportunities to join with an incoming partner 
stream tuple. This strategy is also consistent with PROB. More generally, 
random load shedding [39, 41, or RAND [15], which simply discards input 
stream tuples at random, is also justifiable under the max-subset measure by 
this equal-frequency assumption. 

Age-Based Model. The age-based model of 1371 captures a scenario 
where the stationarity assumption of the frequency-based model breaks down 
because of correlated tuple arrivals in the input streams. Consider the Auction 
and Bid example from Section 3.1. A recent Auction tuple has a much better 
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chance of joining with a new Bid than an old Auction tuple. Furthermore, 
we may be able to assume that the bids for each open auction follow a similar 
arrival pattern. The age-based model states that, for each tuple s in stream S 
(with partner stream S'), the expected number of output tuples that s generates 
at each time step during its lifetime is given by a function p(At), where At  
denotes the age of the tuple (i.e., how long it has been in the join state). The 
age-based model further assumes that function p(At) is the same for all tuples 
from the same stream, independent of their join attribute values. At the first 
glance, this assumption may appear quite strong: If we consider two tuples 
with the same join attribute value arriving at two different times t l  and t2, we 
should have p(t - tl) = p(t - t2) for all t when both tuples are in the join 
state, which would severely limit the form of function p. However, this issue 
will not arise, for example, if the join attribute is a key of the input stream (e.g., 
Auction). Because foreign-key joins are so common, the age-based model may 
be appropriate in many settings. 

An optimal state management strategy for the age-based model, called AGE, 
was developed by [37]. Given the function p(At), AGE calculates an optimal 
age At, such that the expected number of output tuples generated by a tuple 
per unit time is maximized when it is kept until age At,. Intuitively, if every 
tuple in the cache is kept for exactly At, time steps, then we are making the 
most efficient use of every slot in the cache. This optimal strategy is possible 
if the arrival rate is high enough to keep every cache slot occupied. If not, we 
can keep each tuple to an age beyond the optimal, which would still result in an 
optimal strategy assuming that p(At) has no local minima. A heuristic strategy 
for the case where p(At) has local minima is also provided in [37]. 

Towards General Stochastic Models. There are many situations where 
the input stream follows neither the frequency-based model nor the age-based 
model. For example, consider a measurement stream S1 generated by a network 
of sensors. Each stream tuple carries a timestamp tm recording the time at which 
the measurement was taken by the sensor (which is different from the stream 
timestamp t). Because of processing delays at the senors, transmission delays 
in the network, and a network protocol with no in-order delivery guarantee 
(e.g., UDP), the t, values do not arrive in order, but may instead follow a 
discretized bounded normal distribution centered at the current time minus 
the average latency. Figure 10.1 shows the pdf (probability density function) 
of this distribution, which moves right as time progresses. Suppose there is 
a second stream S2 of timestamped measurements of a different type coming 
from another network of sensors, which is slower and less reliable. The resulting 
distribution has a higher variance and looser bounds, and lags slightly behind 
that of S1. To correlate measurements from S1 and S2 by time, we use an 
equijoin on t,. Intuitively, as the pdf curve for S2 moves over the join attribute 
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Figure 10.1. Drifting normal distributions. Figure 10.2. Example ECBs. 

value of a cached S1 tuple, this tuple gets a chance ofjoining with each incoming 
S2 tuple, with a probability given by S2's pdf at that time. Clearly, these 
streams do not follow the frequency-based model, because the frequency of 
each t, value varies over time. They do not follow the age-based model either, 
because each arriving tuple may have a different p(At) function, which depends 
on the location of the partner stream's pdf. Blindly applying a specific join 
state management strategy without verifying its underlying assumption may 
lead to very poor performance. To illustrate, consider the two tuples x and 
y fi-om stream S2 in Figure 10.1 currently cached at time t o  as part of the 
join state. Which tuple should we choose to discard when we are low on 
memory? Intuitively, it is better to discard y since it has almost already b'missed" 
the moving pdf of S1 and is therefore unlikely to join with future S1 tuples. 
Unfortunately, if we use the past to predict future, PROB might make the exact 
opposite decision: y would be kept because it probably has joined more times 
with S1 in thepast than x. 

Work by Xie et al. [45] represents a first step towards developing general 
techniques to exploit a broader class of statistical properties, without being tied 
to particular models or assumptions. A general question posed by [45] is, given 
the stochastic processes modeling the join attribute values of the input stream 
tuples, what join state management strategy has the best expected performance? 
In general, the stochastic processes can be non-stationary (e.g., the join attribute 
value follows a random walk, or its mean drifts over time) and correlated (e.g., 
if one stream has recently produced a certain value, then it becomes more likely 
for the other stream to produce the same value). 

Knowing the stochastic processes governing the input streams gives us con- 
siderable predictive power, but finding the optimal join state management strat- 
egy is still challenging. A brute-force approach (called FlowExpect in [45]) 
would be the following. Conceptually, starting from the current time and the 
current join state, we enumerate all possible sequences of future "state manage- 
ment actions" (up to a given length), calculate the expected number of output 
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tuples for each sequence, and identify the optimal sequence. This search prob- 
lem can be formulated and solved as a network flow problem. The first action 
in the optimal sequence is taken at the current time. As soon as any new tuple 
arrives, we solve the problem again with the new join state, and take the first 
action in the new optimal sequence. The process then repeats. Interestingly, 
Xie et al. [45] showed that it is not enough to consider all possible sequences 
of unconditional state management actions; we must also consider strategies 
that make actions conditional upon the join attribute values of future tuples. 
An example of a conditional action at a future time t might be: "If the new 
tuple arriving at t has value 100 as its join attribute, then discard the new tuple; 
otherwise use it to replace the tuple currently occupying the fifth cache slot." 
Unfortunately, searching through the enormous space of conditional action se- 
quences is not practical. Therefore, we need to develop simpler, more practical 
approaches. 

It turns out that under certain conditions, the best state management action is 
clear. Xie et al. [45] developed an ECB dominance test (or dom-test for short) 
to capture these conditions. From the stochastic processes governing the input 
streams, we can compute a tuple s's ECB (expected cumulative benejt) with 
respect to the current time to as a function B,(At), which returns the number 
of output tuples that s is expected to generate over the period (to, to +At]. As a 
concrete example, Figure 10.2 plots the ECBs of tuples x, y, and z from stream 
S2 in Figure 10.1. Intuitively, we prefer removing tuples with the "lowest" ECBs 
from the cache. The dom-test states that, if the ECB of tuple sl dominates that 
of tuple s 2  (i.e., Bsl (At) > Bs2 (At) for all At  > 0), then keeping sl is better 
than or equally good as keeping s2. For example, from Figure 10.2, we see 
that tuple y is clearly the least preferable among the three. However, because 
the ECBs of x and z cross over, the dom-test is silent on the choice between 
x and z. To handle "incomparable" ECBs such as these, Xie et al. proposed a 
heuristic measure that combines the ECB with a heuristic "survival probability" 
function L, (At) estimating the probability for tuple s to be still cached at time 
to + At. Intuitively, if we estimate that x and z will be replaced before the 
time when their ECBs cross, then x is more preferable; otherwise, z is more 
preferable. Although the heuristic strategy cannot guarantee optimality in all 
cases, it always agrees with the decision of the dom-test whenever that test is 
applicable. 

It is instructive to see how the general techniques above apply to specific 
scenarios. To begin, consider the simple case of unwindowed stream joins under 
the frequency-based model. The ECB of a tuple s is simply a linear function 
Bs(At) = b(s)At, where b(s) is the number of output tuples that s is expected 
to generate per unit time, consistent with the definition of "benefit" discussed 
earlier in the context of the frequency-based model. Obviously, for two tuples sl 
and s2, SI'S ECB dominates S ~ ' S  ECB if and only if b(sl) 2 b(s2). Therefore, 
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the dom-test basically yields PROB, and provides a proof of its optimality. The 
case of sliding-window joins is considerably more complex, and as discussed 
earlier, the optimal state management strategy is not known. As illustrated by 
Figure 10.3, the ECB of a tuple s consists of two connected pieces: The fist 
piece has slope b(s), while the second piece is flat and begins at the time l(s) 
when s will drop out of the sliding window. While the dom-test does not help 
in comparing sl and s 2  in Figure 10.3, some insight can still be gained from 
their ECBs. Suppose we decide to cache sl and discard s2. If at time l(s1) 
when $1 exits the join state, a new tuple will be available to take its place and 
produce at least Bs2 (1  (s2)) - Bsl ( 1  (sl)) output tuples during (1 (sl), l(sz)], 
then our decision is justified. Still, the exact condition that guarantees the 
optimality of the decision is complex, and will be an interesting problem for 
M e r  investigation. 

Finally, let us try applying the ECB-based analysis to the age-based model, 
for which we know that AGE [37] is optimal. Under the age-based model, 
every new tuple has the same ECB Bo(At) at the time of its arrival. As the 
tuple ages in the cache, its ECB "shifts": The ECB of a tuple at age t is 
Bt(At) = Bo(t + At) - Bo(t). For some shapes of Bo, it is possible to have 
ECBs that are not comparable by the dom-test. Figure 10.4 illustrates one such 
example; the marks on the ECB curves indicate when the respective tuples 
reach their optimal ages. Between two tuples old and new in Figure 10.4, 
the correct decision (by AGE) is to ignore the new tuple and keep caching the 
old tuple (until it reaches its optimal age). Unfortunately, however, the dom- 
test is unable to come to any conclusion, for the following two reasons. First, 
the dom-test actually provides a stronger optimality guarantee than AGE: The 
dom-test guarantees the optimality of its decisions over any time period; in 
contrast, AGE is optimal when the period tends to infinity. Second, the dom- 
test examines only the two ECBs in question and does not make use of any 
global information. However, in order to realize that replacing old tuple is not 

new tuple 
available? 

At 

Figure 10.3. ECBs for sliding-window joins Figure 10.4. ECBs under the age-based 
under the frequency-based model. model. 
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worthwhile in Figure 10.4, we need to be sure that when we do discard old when 
it reaches its optimal age, there will be a new tuple available at that time with 
high enough benefit to make up for the loss in discarding new earlier. Indeed, 
the age-based model allows us to make this conclusion from its assumption that 
every incoming tuple has the same ECB. It remains an open problem to develop 
better, general techniques to overcome the limitations of the dom-test without 
purposefully 'bspecial-casing'y for specific scenarios. 

An important practical problem is that we may not know in advance the 
parameter values of the stochastic processes modeling the input streams. One 
possibility is to use existing techniques to compute stream statistics online, or 
offline over the history of observations. Another approach proposed by [45] is 
to monitor certain statistics of the past behavior of the cache and input streams, 
and use them to estimate the expected benefit of caching. A notable feature of 
the proposed method is that it considers the form of the stochastic process in 
order to determine what statistics to monitor. This feature is crucial because, for 
time-dependent processes, the past is not always indicative of the future. For 
example, suppose that the join attribute values in a stream follow a distribution 
whose shape is stationary but mean is drifting over time. Simply tracking the 
frequency of each value is not meaningful as it changes all the time. Instead, we 
can subtract the current mean from each observed value, and track the frequency 
of these offset values, which will remain constant over time. 

One direction for future research is to investigate how statistical properties 
of the input stream propagate to the output of stream joins. This problem is 
important if we want to apply the techniques in this section to more complex 
stream queries where the output of a stream join may be the input to another. 
While there has been some investigation of the non-streaming version of this 
problem related to its application in query optimization, there are many sta- 
tistical properties unique to streams (e.g., trends, orderedness, clusteredness) 
whose propagation through queries is not yet fully understood. 

Relationship to Classic Caching. A natural question is how the stream 
join state management problem differs from the classic caching problem. Many 
cache replacement policies have been proposed in the past, e.g., LFD (longest- 
forward distance), LRU (least-recently used), LFU (least-frequently used), etc. 
All seem applicable to our problem. After all, our problem comes down to 
deciding what to retain in a cache to serve as many "reference requests" by the 
partner stream as possible. As pointed out by [45], there is a subtle but important 
difference between caching stream tuples and caching regular objects. When 
caching regular objects, we can recover from mistakes easily: The penalty of 
not caching an object is limited to a single cache miss, after which the object 
would be brought in and cached if needed. In contrast, in the case of stream 
join state management, a mistake can cost a lot more: If we discard a tuple 
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completely from the join state, it is irrevocably gone, along with all output 
tuples that it could generate in the future. This difference explains why LFD, 
the optimal replacement policy for classic caching, turns out to be suboptimal 
for stream join state management, where references beyond the first one also 
matter. 

Even if we relax the single-pass stream processing model and allow state to 
be spilled out to disk, join state management still differs from classic caching. 
The reason is that stream processing systems, e.g., those running the XJoin- 
family of algorithms, typically recover missing output tuples by processing 
flushed tuples later offline. In other words, "cache misses'' are not processed 
online as in classic caching-random disk accesses may be too slow for stream 
applications, and just to be able to detect that there has indeed been a cache 
miss (as opposed to a new tuple that does not join with any previous arrivals) 
requires maintaining extra state. 

Despite their differences, classic caching and stream join state management 
can be tackled under the same general analytical framework proposed by [45]. 
In fact, classic caching can be reduced to stream join state management, and can 
be analyzed using ECBs, in some cases yielding provably optimal results that 
agree with or extend classic ones. Such consistency is evidence of the strong 
link between the two problems, and a hint that some results on classic caching 
could be brought to bear on the state management problem for stream joins. 

Joining with Database Relation. Interestingly, unlike the case of joining 
two streams, state management for joining a stream and a database relation 
under the non-retroactive relation semantics (Section 2) is practically identical 
to classic caching [45]. First, it is easy to see that there is no benefit at all in 
caching any stream tuples, because under the non-retroactive relation semantics 
they do not join with any future updates to the relation. On the other hand, 
for tuples in the database relation, their current version can be cached in fast 
memory to satisfy reference requests by stream tuples. Upon a cache miss, 
the disk-resident relation can be probed. It would be interesting to investigate 
whether it makes sense to defer handling of misses to XJoin-style "mop-up" 
phases. However, care must be taken to avoid joining old stream tuples with 
newer versions of the database relation. 

The Sampling-Rate Measure. By design, join state management strategies 
optimized for max-subset favor input tuples that are more likely to join with the 
partner stream, causing such tuples to be overrepresented in the result. While 
this bias is not a problem in many contexts, it can be an issue if a statistically 
meaningful sample is desired, e.g., to obtain unbiased statistics of the join result. 
In this case, we should use the sampling-rate measure. 
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Getting an unbiased random sample of a join result has long been recognized 
as a difficult problem [34, 121. The straightforward approach of sampling 
each input uniformly and then joining them does not work-the result may 
be arbitrarily skewed and small compared with the actual result. The hardness 
result from [37] states that for arbitrary input streams, if the available memory is 
insufficient to retain the entire sliding windows (or the entire history, if the join 
is unwindowed), then it is impossible to guarantee a uniform random sample for 
any nonzero sampling rate. The problem is that any tuple we choose to discard 
may turn out to be the one that will generate all subsequent output tuples. 

Srivastava and Widom [37] developed a procedure for generating unbiased 
random samples of join results under the frequency-based and age-based mod- 
els. The procedure requires knowledge of the model parameters, and uses them 
to determine the maximum sampling rate under the constraint that the proba- 
bility of running out of memory at runtime is sufficiently small. The procedure 
keeps each stream tuple in the join state until the tuple will not contribute any 
more result tuples to the sample. Note that not all join result tuples that can 
be obtained from the join state will actually be output-many may need to dis- 
carded in order to keep the sample unbiased. This inefficient use of resources 
is unavoidable because of the stringent requirement of a truly random sample. 
A statistically weaker form of sampling called cluster sampling, which uses 
resources more efficiently, was also considered by [37]. Cluster sampling is 
still unbiased, but is no longer independent; i.e., the inclusion of tuples is not 
independent of each other. Which type of sampling is appropriate depends on 
how the join result will be used. 

4. Fundamental Algorithms for Stream Join Processing 
Symmetric hash join (SHJ) is a simple hashing-based join algorithm, which 

has been used to support highly pipelined processing in parallel database sys- 
tems [44]. It assumes that the entire join state can be kept in main memory; the 
join state for each input stream is stored in a hash table. For each incoming S 
tuple, SHJ inserts it into the hash table for S, and uses it to probe the hash table 
for the partner stream of S to identify joining tuples. SHJ can be extended 
to support the sliding-window semantics and the join statement management 
strategies in Section 3, though SHJ is limited to the single-pass stream process- 
ing model. Golab et al. [22] developed main-memory data structures especially 
suited for storing sliding windows, with efficient support for removing tuples 
that have fallen out of the sliding windows. 

Both XJoin [41] and DPHJ (double pipelined hash join) of Tukwila [29] 
extend SHJ by allowing parts of the hash tables to be spilled out to disk for 
later processing. This extension removes the assumption that the entire join 
state must be kept in memory, greatly enhancing the applicability of the algo- 
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rithrn. Tukwila's DPHJ processes disk-resident tuples only when both inputs 
are exhausted; XJoin schedules joins involving disk-resident tuples whenever 
the inputs are blocked, and therefore is better suited for stream joins with un- 
bounded inputs. One complication is the possibility of producing duplicate 
output tuples. XJoin pioneers the use of timestamp marking for detecting du- 
plicates. Timestamps record the period when a tuple was in memory, and the 
times when a memory-resident hash partition was used to join with the corre- 
sponding disk-resident partition of the partner stream. From these timestamps, 
XJoin is able to infer which pairs of tuples have been processed before. 

XJoin is the basis for many stream join algorithms developed later, e.g., [33, 
381. RPJ [38] is the latest in the series. One of the main contributions of RPJ, 
discussed earlier in Section 3.2, is a statistics-based flushing strategy that tries 
to keep in memory those tuples that are more likely to join. In contrast, XJoin 
flushes the largest hash partition; HMJ (hash merge join) of [33] always flushes 
corresponding partitions together, and tries to balance memory allocation be- 
tween incoming streams. Neither XJoin nor HMJ takes tuple join probabilities 
into consideration. Unlike HMJ, which joins all previously flushed data when- 
ever entering a disk-join phase, RPJ breaks down the work into smaller units, 
which offer more scheduling possibilities. In particular, RPJ also uses statistics 
to prioritize disk-join tasks in order to maximize output rate. 

There are a number of interesting open issues. First, can we exploit statistics 
better by allowing flushing of individual tuples instead of entire hash partitions? 
This extension would allow us to apply the fme-grained join state management 
techniques from Section 3.2 to the XJoin-family of algorithms. However, the 
potential benefits must be weighed against the overhead in statistics collection 
and bookkeeping to avoid duplicates. Second, is it ever beneficial to reintroduce 
a tuple that has been previously flushed to disk back into memory? Again, what 
would be the bookkeeping overhead involved? Third, can we develop better 
statistics collection methods for RPJ? Currently, it maintains statistics on the 
partition level, but the hash function may map tuples with very different statistics 
to the same partition. 

Sorting-based join algorithms, such as the sort-merge join, have been tradi- 
tionally deemed inappropriate for stream joins, because sorting is a blocking 
operation that requires seeing the entire input before producing any output. To 
circumvent this problem, Dittrich et al. [20] developed an algorithm called PMJ 
(progressive merge join) that is sorting-based but non-blocking. In fact, both 
RPJ and HMJ use PMJ for joining disk-resident parts of the join state. The 
idea of PMJ is as follows. During the initial sorting phase that creates the ini- 
tial runs, PMJ sorts portions of both input streams in parallel, and immediately 
produces join result tuples from the corresponding runs that are in memory at 
the same time. During the subsequent merge phases that merge shorter runs 
into longer ones, PMJ again processes both input streams in parallel, and joins 
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them while their runs are in memory at the same times. To ensure that the output 
contains no duplicates, PMJ does not join tuples from corresponding shorter 
runs that have been joined in a previous phase; the duplicate avoidance logic is 
considerably simpler than XJoin. Of course, PMJ pays some price for its non- 
blocking feature-it does incur a moderate amount of overhead compared to 
the basic sort-merge join. On the other hand, PMJ also inherits the advantages 
of sorting-based algorithms over hashing-bashed algorithms, including in par- 
ticular the ability to handle non-equality joins. A more thorough performance 
comparison between PMJ and XJoin for equijoins would be very useful. 

5. Optimizing Stream Joins 
Optimizing Response Time. Viglas and Naughton [42] introduced the 
notion of rate-based optimization and considered how to estimate the output 
rate of stream operators. An important observation is that standard cost analysis 
based on total processing cost is not applicable in the stream setting, because 
infinite costs resulted from unbounded inputs cannot be compared directly. 
Even if one can "hack" the analysis by assuming a large (yet bounded) input, 
classic analysis may produce incorrect estimate of the output rate since it ignores 
the rate at which inputs (or intermediate result streams) are coming. Specifically, 
classic analysis assumes that input is available at all times, but in practice 
operators could be blocked by the input. The optimization objectives considered 
by [42] are oriented towards response time: For a stream query, how can we 
produce the largest number of output tuples in a given amount of time, or 
produce a given number of output tuples in the shortest amount of time? 

As an example of response-time optimization, Hammad et al. [28] studied 
shared processing of multiple sliding-window joins, focusing on developing 
scheduling strategies aimed at reducing response times across queries. More 
broadly speaking, work on non-blocking join algorithms, e g ,  XJoin and PMJ 
discussed earlier, also incorporate response-time considerations. 

Optimizing Unit-Time Processing Cost. Kang et al. [30] were among 
the first to focus specifically on optimization of stream joins. They made the 
same observation as in [42] that optimizing the total processing cost is no longer 
appropriate with unbounded input. However, instead of optimizing response 
time, they propose to optimize the processing cost per unit time, which is 
equivalent to the average processing cost per tuple weighted by the arrival rate. 
Another important observation made by [30] is that the best processing strategy 
may be asymmetric; i.e., different methods may be used for joining a new S1 
tuple with S2's join state and for joining a new S2 tuple with SlYs join state. 
For example, suppose that S1 is very fast and S2 is very slow. We may index 
SzYs join state as a hash table while leaving Sl 's join state not indexed. The 
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reason for not indexing Sl is that its join state is frequently updated (because 
S1 is fast) but rarely queried (because S2 is slow). 

Ayad and Naughton [4] provided more comprehensive discussions of opti- 
mization objectives for stream queries. An important observation is that, given 
enough processing resources, the steady-state output rate of a query is inde- 
pendent of the execution plan and therefore should be not be the objective of 
query optimization; a cost-based objective should be used in this case instead. 
Another interesting point is that load shedding considerations should be incor- 
porated into query optimization: If we simply shed load from a plan that was 
originally optimized assuming sufficient resources, the resulting plan may be 
suboptimal. 

Optimizing Multi-Way Stream Joins. XJoin can be used to implement 
multi-way joins in a straightforward manner. For instance, a four-way join 
among Sly S2, S3, and S4 can be implemented as a series of XJoins, e.g., 
((S1 XJoin S2) XJoin S3) XJoin S4. Since XJoin needs to store both of its in- 
puts in hash tables, the example plan above in effect materializes the intermedi- 
ate results S1 XJoin S2 and (S1 XJoin S2) XJoin S3. An obvious disadvantage 
of this plan is that these intermediate results can become quite large and costly to 
maintain. Another disadvantage is that this plan is static and fixes the join order. 
For example, a new S3 tuple must be joined with the materialized S1 XJoin Sz 
first, and then with S4; the option of joining the new S3 tuple first with S4 is 
simply not available. 

Viglas et al. [43] proposed MJoin to combat the above problems. MJoin 
maintains a hash table for each input involved in the multi-way join. When a 
tuple arrives, it is inserted into the corresponding hash table, and then used to 
probe all other hash tables in some order. This order can be different for tuples 
from different input streams, and can be determined based on join selectivities. 
Similar to XJoin, MJoin can flush join state out to disk when low on memory. 
Flushing is random (because of the assumption of a simple statistical model), 
but for the special case of starjoins (where all streams join on the same attribute), 
flushing is "coordinated": When flushing one tuple, joining tuples from other 
hash tables are also flushed, because no output tuples can be produced unless 
joining tuples are found in all other hash tables. Note that coordinated flushing 
does not bring the same benefit for binary joins, because in this case output 
tuples are produced by joining an incoming tuple with the (only) partner stream 
hash table, not by joining two old tuples from difference hash tables. 

Finding the optimal join order in MJoin is challenging. A simple heuristic 
that tracks selectivity for each hash table independently would have trouble 
with the following issues: (1) Selectivities can be correlated; e.g., a tuple that 
already joins with S1 will be more likely to join with S2. (2) Selectivities may 
vary among individual tuples; e.g., one tuple may join with many S1 tuples but 
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few S2 tuples, while another tuple may behave in the exact opposite way. The 
first issue is tackled by [5], who provided a family of algorithms for adaptively 
finding the optimal order to apply a series of filters (joining a tuple with a stream 
can be regarded as subjecting the tuple to a filter) through runtime profiling. In 
particular, the A-Greedy algorithm is able to capture correlations among filter 
selectivities, and is guaranteed to converge to an ordering within a constant 
factor of the optimal. The theoretical guarantee extends to star joins; for general 
join graphs, though A-Greedy still can be used, the theoretical guarantee no 
longer holds. The second issue is recently addressed by an approach called 
CBR [9], or content-based routing, which makes the choice of query plan 
dependent on the values of the incoming tuple's "classifier attributes," whose 
values strongly correlate with operator selectivities. In effect, CBR is able to 
process each incoming tuple with a customized query plan. 

One problem with MJoin is that it may incur a significant amount of recom- 
putation. Consider again the four-way join among S1, . . . , S4, now processed 
by a single MJoin operator. Whenever a new tuple s3 arrives in S3, MJoin 
in effect executes the query S1 w S2 w {s3) w S4; similarly, whenever a new 
tuple s 4  arrives in S4, MJoin executes Sl w S2 w S3 w is4). The common 
subquery S1 w S2 is processed over and over again for these S3 and S4 tuples. 
In contrast, the XJoin plan ((S1 XJoin S2) XJoin S3) XJoin S4 materializes all 
its intermediate results in hash tables, including S1 w S2; new tuples from S3 
and S4 simply have to probe this hash table, thereby avoiding recomputation. 
The optimal solution may well lie between these two extremes, as pointed out 
by [6] .  They proposed an adaptive caching strategy, A-Caching, which starts 
with MJoins and adds join subresult caches adaptively. A-Caching profiles 
cache benefit and cost online, selects caches dynamically, and allocates mem- 
ory to caches dynamically. With this approach, the entire spectrum of caching 
options from MJoins to XJoins can be explored. 

A number of other papers also consider multi-way stream joins. Golab and 
0zsu [23] studied processing and optimization of multi-way sliding-window 
joins. Traditionally, we eagerly remove (expire) tuples that are no longer part of 
the sliding window, and eagerly generate output tuples whenever input arrives. 
The authors proposed algorithms supporting lazy expiration and lazy evaluation 
as alternatives, which achieve higher efficiency at the expense of higher memory 
requirements and longer response times, respectively. Hamrnad et al. [27] 
considered multi-way stream joins where a time-based window constraint can 
be specified for each pair (or, in general, subset) of input streams. An interesting 
algorithm called FEW is proposed, which computes a forward point in time 
before which all arriving tuples can join, thereby avoiding repeated checking 
of window constraints. 

Eddies [3] are a novel approach towards stream query processing and opti- 
mization that is markedly different from the standard plan-based approaches. 
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Eddies eliminate query plans entirely by routing each input tuple adaptively 
across the operators that need to process it. Interestingly, in eddies, the behav- 
ior of SteM [36] mimics that of MJoin, while STAIRS [16] is able to emulate 
XJoin. Note that while eddies provide the mechanisms for adapting the pro- 
cessing strategy on an individual tuple basis, currently their policies typically 
do not result in plans that change for every incoming tuple. It would be nice to 
see how features of CBR can be supported in eddies. 

6. Conclusion 
In this chapter, we have presented an overview of research problems and 

recent advances in join processing for data streams. Stream processing is a 
young and exciting research area, yet it also has roots in and connections to 
well-established areas in databases as well as computer science in general. In 
Section 3.2, we have already discussed the relationship between stream join 
state management and classic caching. Now, let us briefly re-examine parts of 
this chapter in light of their relationship to materialized views [25]. 

The general connection between stream processing and materialized views 
has long been identified [8]. This connection is reflected in the way that we 
specify the semantics of stream joins-by regarding them as views and defining 
their output as the view update stream resulting from base relation updates 
(Section 2). Recall that the standard semantics requires the output sequence to 
reflect the exact sequence of states of the underlying view, which is analogous 
to the notion of complete and strong consistency of a data warehouse view 
with respect to its source relations [46]. The connection does not stop at the 
semantics. The problem of determining what needs to be retained in the state to 
compute a stream join is analogous to the problem of deriving auxiliary views 
to make a join view self-maintainable [35]. Just as constraints can be used to 
reduce stream join state (Section 3.1), they have also been used to help expire 
data from data warehouses without affecting the maintainability of warehouse 
views [21]. For a stream join Sl w . . . w Sn, processing an incoming tuple from 
stream Si is analogous to maintaining a join view incrementally by evaluating 
a maintenance query S1 w . . - w ASi w - . - w Sn. Since there are n different 
forms of maintenance queries (one for each i), it is natural to optimize each 
form differently, which echoes the intuition behind the asymmetric processing 
strategy of [30] and MJoin [43]. In fact, we can optimize the maintenance query 
for each instance of ASi, which would achieve the same goal of supporting a 
customized query plan for each tuple as CBR [9]. Finally, noticing that the 
maintenance queries run frequently and share many common subqueries, we 
may choose to materialize some subqueries as additional views to improve 
query performance, which is also what A-Caching [6] tries to accomplish. 
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Of course, despite high-level similarities, techniques from the two areas- 
data streams and materialized views-may still differ significantly in actual 
details. Nonetheless, it would be nice to develop a general framework that uni- 
fies both areas, or, less ambitiously, to apply ideas from one area to the other. 
Many such possibilities exist. For example, methods and insights from the well- 
studied problems of answering query using views [26] and view selection [14] 
could be extended and applied to data streams: Given a set of stream queries 
running continuously in a system, what materialized views (over join states and 
database relations) and/or additional stream queries can we create to improve the 
performance of the system? Another area is distributed stream processing. Dis- 
tributed stream processing can be regarded as view maintenance in a distributed 
setting, which has been studied extensively in the context of data warehous- 
ing. Potentially applicable in this setting are techniques for making warehouse 
self-maintainable [35], optimizing view maintenance queries across distributed 
sources [3 11, ensuring consistency of multi-source warehouse views 1461, etc. 
Conversely, stream processing techniques can be applied to materialized views 
as well. In particular, view maintenance could benefit from optimization tech- 
niques that exploit update stream statistics (Section 3.2). Also, selection of 
materialized views for performance can be improved by adaptive caching tech- 
niques (Section 5). 

Besides the future work directions mentioned above and throughout the 
chapter, another important direction worth exploring is the connection between 
data stream processing and distributed event-based systems [19] such as pub- 
lish/subscribe systems. Such systemsneed to scale to thousands or even millions 
of subscriptions, which are essentially continuous queries over event streams. 
While efficient techniques for handling continuous selections already exist, 
scalable processing of continuous joins remains a challenging problem. Ham- 
mad et al. [28] considered shared processing of stream joins with identical join 
conditions but different sliding-window durations. We need to consider more 
general query forms, e.g., joins with different join conditions as well as addi- 
tional selection conditions on input streams. NiagaraCQ [I 31 and CACQ [32] 
are able to group-process selections and share processing of identical join oper- 
ations. However, there is no group or shared processing of joins with different 
join conditions, and processing selections separately from joins limits optimiza- 
tion potentials. PSoup [ l  11 treats queries as data, thereby allowing set-oriented 
processing of queries with arbitrary join and selection conditions. Still, new 
indexing and processing techniques must be developed for the system to be able 
to process each event in time sublinear in the number of subscriptions. 
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Abstract Online monitoring of data streams poses a challenge in many data-centric appli- 
cations including network traffic management, trend analysis, web-click streams, 
intrusion detection, and sensor networks. Indexing techniques used in these ap- 
plications have to be time and space efficient while providing a high quality of 
answers to user queries: (I) queries that monitor aggregates, such as finding sur- 
prising levels ("volatility" of a data stream), and detecting bursts, and (2) queries 
that monitor trends, such as detecting correlations and finding similar patterns. 
Data stream indexing becomes an even more challenging task, when we take into 
account the dynamic nature of underlying raw data. For example, bursts of events 
can occur at variable temporal modalities from hours to days to weeks. We focus 
on a multi-resolution indexing architecture. The architecture enables the discov- 
ery of "interesting" behavior online, provides flexibility in user query definitions, 
and interconnects registered queries for real-time and in-depth analysis. 

Keywords: stream indexing, monitoring real-time systems, mining continuous data flows, 
multi-resolution index, synopsis maintenance, trend analysis, network traffic 
analysis. 
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1. Introduction 
Raw stream data, such as faults and alarms generated by network traffic monitors 
and log records generated by web servers, are almost always at low level and 
too large to maintain in main memory. One can instead summarize the data 
and compute synopsis structures at meaningful abstraction levels on the fly. 
The synopsis is a small space data structure, and can be updated incrementally 
as new stream values arrive. Later in operational cycle, it can be used to 
discover interesting behavior, which prompts in-depth analysis at lower levels 
of abstraction [lo]. 

Consider the following application in astrophysics: the sky is constantly 
observed for high-energy particles. When a particular astrophysical event hap- 
pens, a shower of high-energy particles arrives in addition to the background 
noise. This yields an unusually high number of detectable events (high-energy 
photons) over a certain time period, which indicates the existence of a Gamma 
Ray Burst. If we know the duration of the shower, we can maintain a count 
on the total number of events over sliding windows of the known window size 
and raise an alarm when the moving sum is above a threshold. Unfortunately, 
in many cases, we cannot predict the duration of the burst period. The burst of 
high-energy photons might last for a few milliseconds, a few hours, or even a 
few days [3 11. 

Finding similar patterns in a time series database is a well studied prob- 
lem [I, 131. The features of a time series sequence are extracted using a sliding 
window, and inserted into an index structure for query efficiency. However, 
such an approach is not adequate for data stream applications, since it requires 
a time consuming feature extraction step with each incoming data item. For this 
purpose, incremental feature extraction techniques that use the previous feature 
in computing the new feature have been proposed to accelerate per-item process- 
ing [30]. A batch technique can further decrease the per-item processing cost by 
computing a new feature periodically instead of every time unit [22]. A majority 
of these techniques assume a priori knowledge on query patterns. However in 
a real world situation, a user might want to know all time periods during which 
the movement of a particular stock follows a certain interesting trend, which 
itself can be generated automatically by a particular application [26]. In order to 
address this issue, a multi-resolution indexing scheme has been proposed [16]. 
This work addresses off-line time series databases, and does not consider how 
well the proposed scheme extends to a real-time streaming algorithm. 

Continuous queries that run indefinitely, unless a query lifetime has been 
specified, fit naturally into the mold of data stream applications. Examples of 
these queries include monitoring a set of conditions or events to occur, detecting 
a certain trend in the underlying raw data, or in general discovering relations 
between various components of a large real time system. The kinds of queries 
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that are of interest from an application point of view can be listed as follows: 
(1) monitoring aggregates, (2) monitoring or finding patterns, and (3) detecting 
correlations. Each of these queries requires data management over some history 
of values, and not just over the most recently reported values 191. For example 
in case of aggregate queries, the system monitors whether the current window 
aggregate deviates significantly from that aggregate in most time periods of 
the same size. In case of correlation queries, the self-similar nature of sensor 
measurements may be reflected as temporal correlations at some resolution over 
the course of the stream [24]. Therefore, the system has to maintain historical 
data along with the current data in order to be able to answer these queries. 

A key vision in developing stream management systems of practical value is 
to interconnect queries in a monitoring infrastructure. For example, an unusual 
volatility of a stream may trigger an in-depth trend analysis. Unified system so- 
lutions can lay ground for tomorrow's information infrastructures by providing 
users with a rich set of interconnected querying capabilities 181. 

2. Indexing Streams 
In this section, we introduce a multi-resolution indexing architecture, and then 
later in Section 3, show how it can be utilized to monitor user queries efficiently. 
Multi-resolution approach imposes an inherent restriction on what constitutes 
a meaningful query. The core part of the scheme is the feature extraction at 
multiple resolutions. A dynamic index structure is used to index features for 
query efficiency. The system architecture is shown in Figure 1 1.1. The key 
architecture aspects are: 

The features at higher resolutions are computed using the features at 
lower resolutions; therefore, all features are computed in a single pass. 

w The system guarantees the accuracy provided to user queries by provable 
error bounds. 

The index structure has tunable parameters to trade accuracy for speed 
and space. The per-item processing cost and the space overhead can be 
tuned according to the application requirements by varying the update 
rate and the number of coefficients maintained in the index structure. 

2.1 Preliminaries and definitions 
We adapt the use of x[i] to refer to the i-th entry of stream x, and x[il : ia] to 
refer to the subsequence of entries at positions il through i2. 

DEFINITION 2.1 A feature is the result of applying a characteristic function 
over a possibly normalized set of stream values in order to acquire a higher 
level information or concept. 
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1 Model 2 /' ' ',\ 

AR Model 1 //-\ 

Stream Processin En ine P 
Figuve 11.1. The system architecture for a multi-resolution index structure consisting of 3 
levels and strearn-specific auto-regressive (AR) models for capturing multi-resolution trends in 
the data. 

The widely used characteristic hc t ions  are (1) aggregate functions, such as 
summation, maximum, minimum, and average, (2) orthogonal transformations, 
such as discrete wavelet transform (DWT) and discrete fourier transform (DFT), 
and (3) piecewise linear approximations. Normalization is performed in case 
of DWT, DFT, and linear approximations. The interested reader can refer to 
the Sections 3.2 and 3.3 for more details. 

2.2 Feature extraction 
The features at a specific resolution are obtained with a sliding window of a 
fixed length w. The sliding window size doubles as we go up a resolution, i.e., 
a level. In the rest of the paper, we will use the terms "level" and "resolution" 
interchangeably. We denote a newly computed feature at resolution i as Fi. 
Figure 11.2 shows an example where we have three resolutions with corre- 
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sponding sliding window sizes of 2,4 and 8. With each arrival of a new stream 
value, features Fo, f i ,  and &, i.e., one for each resolution, can be computed. 
However, this requires maintaining all the stream values within a time window 
equal to the size of the largest sliding window, i.e., 8 in our running example. 
The per-item processing cost and the space required is linear in the size of the 
largest window [16]. 

i I  w=8 
'I w=4 

i l  w=2 
incoming ............ 
stream 

Figure 11.2. Exact feature extraction, update rate T = 1. 

For a given window w of values y = x[t - w + 11, ..., x[t] ,  an incremental 
transformation F (y) is used to compute features. The type of transformation F 
depends on the monitoring query. For example, F is SUM for burst detection, 
MAX-MIN for volatility detection, and DWT for detecting correlations and 
finding surprising patterns. For most real time series, the first f (f << w) 
DWT coefficients retain most of the energy of the signal. Therefore, we can 
safely disregard all but the very first few coefficients to retain the salient features 
(e.g., the overall trend) of the original signal. 

incoming ............ 
stream 

Figure 11.3. Incremental feature extraction, update rate T = 1. 

Using an incremental transformation leads to a more efficient way of com- 
puting features at all resolutions. Level-1 features are computed using level-0 
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features, and level-2 features are computed using level-1 features. In general, 
we can use lower level features to compute higher level features [3]. Fig- 
ure 1 1.3 depicts this new way of computation. This new algorithm has a lower 
per-item processing cost, since we can compute Fl and F2 in constant time. 
The following lemma establishes this result. 

L E M M A  11.1 The new feature Fj at level j for the subsequence x[t - w + 1 : t ]  
can be computed "exactly" using the features FIp1 and Fj-1 at level j - 1 for 
the subsequences x[t - w + 1 : t - w/2] and x[t - w/2 + 1 : t] respectively 

Proof Fj is r n a ~ ( F i - ~ ,  Fj-l), rnin(F&, , Fj-i) ,  .FiV1 + Fj-1 for MAX, 
MIN, and SUM respectively. For DWT, see Lemma 11.4 in Section 2.4. 1 

However, the space required for this scheme is also linear in the size of the 
largest window. The reason is that we need to maintain half of the features 
at the lower level to compute the feature at the upper level incrementally. If 
we can trade accuracy for space, then we can decrease the space overhead by 
computing features approximately. At each resolution level, every c of the 
feature vectors are combined in a box, or in other words, a minimum bounding 
rectangle (MBR). Figure 11.4 depicts this scheme for c = 2. Since each MBR 
B contains c features, it has an extent along each dimension. In case of SUM, 
B[1] corresponds to the smallest sum, and B[2] corresponds to the largest sum 
among all c sums. In general, B[2i] denotes the low coordinate and B [2i + 11 
denotes the high coordinate along the i-th dimension. Note that for SUM, 
MAX and MIN, B has a single dimension. However, for DWT the number of 
dimensions f is application dependent. 

w=2 
~6. incoming 

stream 

Figure 11.4. Approximate feature extraction, update rate T = 1. 
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This new approach decreases the space overhead by a factor of c. Since the 
extent information of the MBRs is used in the computation, the newly computed 
feature will also be an extent. The following lemma proves this result. 

LEMMA 11.2 The new feature Fj at level j can be computed "approximately" 
using the MBRs B1 and B2 that contain the features .FP1 and Fj-1 at level 
,j - 1 respectively. 

Proof 

max(B1 [ I ] ,  B2 [I]) i Fj L max(B1[2], B2 [ 2 ] )  

min(B1 [ I ] ,  B2 [ I ] )  I Fj I min(B1[2], B2 [2] )  

B1 [ I ]  + B2 [l]  I Fj I B1[2] + B2 [2] 
See Lemma 11.5 in Section 2.4 

for MAX, MIN, SUM and DWT respectively. I 
Using MBRs instead of individual features exploits the fact that there is a 

strong spatio-temporal correlation between the consecutive features. Therefore, 
it is natural to extend the computation scheme to eliminate this redundancy. 
Instead of computing a new feature at each data arrival, one can employ a batch 
computation such that a new feature is computed periodically, at every T time 
unit. This allows us to maintain features instead of MBRs. Figure 11.5 shows 
this scheme with T = 2. The new scheme has a clear advantage in terms of 
accuracy; however it can dismiss potentially interesting events that may occur 
between the periods. 

stream 

Figure 11.5. Incremental feature extraction, update rate T = 2. 

Depending on the box capacity and the update rate Tj at a given level j 
(the rate at which we compute a new feature), there are two general feature 
computation algorithms: 
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Online algorithm: Update rate T j  is equal to 1. The box capacity c  is 
variable. It is used for aggregate monitoring queries. 

Batch algorithm: Update rate Tj is greater than 1, i.e., Tj > 1. The 
box capacity is set to c = 1. The setting Tj=W can be used for finding 
surprising patterns and detecting correlations. SWAT is a batch algorithm 
with Tj = 2j[7]. 

We establish the time and space complexity of a given algorithm in terms of 
c and Tj in the following theorem. Assume that W  denotes the sliding window 
size at the lowest resolution j = 0. 

THEOREM 11.3 Fj at level j for a stream can be computed incrementally in 
constant time and in space Q(2j-I w/c&-I). 

Proof 6 at level j is computed using the features at level j - 1 in constant 
time as shown in Lemmas 1 1.1 and 1 1.2. The number of features that need to 
be maintained at level j - 1 for incremental computation at level j is 2 j - I  W. 
Therefore, depending on the box capacity and update rate, the space complexity 
at level j - 1 is Q ( ~ ' - ~ W / C T ~ - ~ ) .  I 

2.3 Index maintenance 
As new values stream in, new features are computed and inserted into the 
corresponding index structures while features that are out of history of interest 
are deleted to save space. Coefficients are computed at multiple resolutions 
starting from level 0 up to a configurable level J: at each level a sliding window 
is used to extract the appropriate features. Computation of features at higher 
levels is accelerated using the MBRs at lower levels. The MBRs belonging to a 
specific stream are threaded together in order to provide a sequential access to 
the summary information about the stream. This approach results in a constant 
retrieval time of the MBRs. The complete algorithm is shown in Algorithm 1. 

Features at a given level are maintained in a high dimensional index structure. 
The index combines information from all the streams, and provides a scalable 
access medium for answering queries over multiple data streams. However, 
each MBR inserted into the index is specific to a single stream. The R*-Tree 
family of index structures are used for indexing MBRs at each level [5]. An R*- 
Tree, a variant of R-Tree [15], is a spatial access method, which splits feature 
space in hierarchically nested, possibly overlapping MBRs. In order to support 
frequent updates, the techniques for predicting MBR boundaries outlined in [20] 
can be used to decrease the cost of index maintenance. 
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Algorithm 1 Compute-Coefficients(Stream S) 
Require: B& denotes the i-th MBR at level j for stream S. 

1:begin procedure 
2: w := W (the window size at the lowest resolution); 
3: tnow denotes the current discrete time; 
4: forj:=Oto J d o  
5: Bfi := the current MBR at level j for stream S; 
6: if 3 = 0 then 
7: y := S[tnow - w + 1 : tnow]; 
8: normalize y if F = D WT, 
9: Fj := F(y); 

10: else 
1 1 :  find MBR ~7- , ,~ ,  that contains the feature 
12: for the subsequence S[tnow - w + 1 : tnow - y]; 
13: find MBR B ~ S _ ~ , ~ ,  that contains the feature 
14: for the subsequence S[tnow - y + 1 : tnow]; 
15: F~ := F(B,S_,,~, , B:,,~,); 
16: end if 
17: if number of features in B& < c (box capacity) then 
18: insert .F~ into B&; 
19: else 
20: insert BSi into index at level j; 
21: start a new MBR B[~+,; 
22: insert Fj into BgS,+,; 
23: end if 
24: adjust the sliding window size to w := w * 2; 
2s: end for 
26:end procedure 
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2.4 Discrete Wavelet Transform 
The approximation coefficients are defined through the inner product of the input 
signal with 4 j , k ,  the shifted and dilated versions a low-pass scaling function $0. 

In the same vein, the detail coefficients are defined through the inner product 
of the input signal with $j,k,  the shifted and dilated versions the wavelet basis 
function $0. 

4 j , k ( t )  = 2-f/240(2-jt - k ) ,  j, k E Z (11.1) 

gj,/c(t) = 2-jI2$o(2-jt - k ) ,  j, k E Z (1 1.2) 

We show how to compute approximation coefficients. Detail coefficients at 
level j are computed using approximation coefficients at level j - 1. Using 
Equation 1 1.1, the approximation signal at level j for the signal x is obtained 
by 

In the same manner, the approximation signal at level j + 1 for x is 

To compute A Z ~ ,  we need to compute coefficients ( x ,  4j+1,n). Using the 
twin-scale relation for 4, we can compute ( x ,  4j+l,n) from ( x ,  q5j,k) [21]. This 
can mathematically be expressed as 

where hk and h are low-pass reconstruction and decomposition filters respec- 
tively. Note that the terms "approximation signal" and "approximation coeffi- 
cients" are used interchangeably. 

LEMMA 11.4 The approximation coeficients at level j, 1 5 j 5 J,  for a 
signal x[ t  - w + 1 : t] can be computed exactly using the approximation 
coeficientsatlevelj-1 forthesignalsx[t-w+l : t -w/2]  andx[t-w/2+l : 

tl. 

Proof Let x ,  X I  and x2 denote signals x[ t  - w + 1 : t] ,  x[ t  - w + 1 : t - w/2] ,  
and x[ t  - w / 2  + 1 : t] respectively. At a particular scale j - 1, the shape of 
the wavelet scaling function 4jFl ,0  is kept the same, while it is translated to 
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This result is due to the linearity of the wavelet transformation. Using Equa- 
tions 11.4, 11.5, and the coefficients (x, $j-l,k), we can obtain the approxima- 
tion signal A?) at level j for x. I 

Original space Feature space 

Figure 11.6. Transforming an MBR using discrete wavelet transform. Transformation corre- 
sponds to rotating the axes (the rotation angle = 45" for Haar wavelets) 

LEMMA 11.5 One can compute approximation coeficients on a hyper-rectangle 
B E sff with low coordinates [xl, , . . . , xr ] and high coordinates [xh, , . . . , xh / I .  

Proof The most recent approximation coefficients for a sliding window of 
values x at a given resolution j can be computed on the extent information of 
the MBRs Bj-l,i, and Bj-l,i, in sf at level j - 1 that contain the coefficients 
of the corresponding two halves of x. These MBRs are merged together using 
Lemma 11.4 to get an MBR B in s f 1 ,  where f' is larger than f (e.g., f '  is 2 f 
for Haar wavelets). The MBR B approximates the coefficients at level j - 1 for 
x. First compute the coefficients for each one of the 2ff corners of B ,  and find 
the tightest MBR A(*) in sf that encloses the resulting 2f1 coefficients in s f .  
The coefficients at level j for s, i.e., the feature AjX), lies inside the MBR 
This is true for any such unitary transformation as wavelet transformation that 
rotates the axes as shown in Figure 11.6. This algorithm has a processing time 
of 0 (2 f f  f ) ,  where f and f '  are constant for a specific application. 1 
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The coefficients at level j for I, i.e., the feature A:), lies inside the MBR 
This is true for any such unitary transformation as wavelet transformation that 
rotates the axes as shown in Figure 1 1.6. This algorithm has a processing time 
of 0 ( 2 f 1  f) ,  where f and f' are constant for a specific application. I 

Error bound. Wavelet transformation corresponds to the rotation of the 
axes in the original space. An input MBR B in the original space is transformed 
to a new shape S in the feature space (see Figure 1 1.6). The resulting shape S 
is projected on each dimension in the feature space, and the tightest MBR A(*) 
that encloses S is identified. The MBR contains the feature The 
volume of is a function of the projection along each dimension. Since 
the wavelet transformation is a distance preserving transformation, the length 
along each dimension can be at most two times the original length. 

3. Querying Streams 
In this section, monitoring queries that are important from an application point 
of view, such as deviant aggregates, interesting patterns, and trend correlations, 
are presented. 

3.1 Monitoring an aggregate query 
In this class of queries, aggregates of data streams are monitored over a set 
of time intervals [31]: "Report all occurrences of Gamma Ray bursts from 
a timescale of minutes to a timescale of days". Formally, given a bounded 
window size w, an aggregate h c t i o n  F ,  and a threshold T associated with the 
window, the goal is to report all those time instances such that the aggregate 
applied to the subsequence x[t - w + 1 : t] exceeds the corresponding window 
threshold, i.e., check if 

F(x[t  - w + 1 : t]) 2 T (1 1.6) 

where t denotes the current time. The threshold values T can either be specified 
as part of the input, or they can be determined using historical data. 

The algorithm. Assume that the query window size is a multiple of W. 
An aggregate query with window size w and threshold T is answered by first 
partitioning the window into multiple sub-windows, wl,wa,. . .,wn such that 
0 5 jl < ... < ji < ji+1 < .. . < jn I. J, and wi = W2ji. For a 
given window of length bW, the partitioning corresponds to the ones in the 
binary representation of b such that Cr=l  2 j i  = b. The current aggregate over 
a window of size w is computed using the sub-aggregates for sub-windows in 
the partitioning. Assume that W = 2 and c = 2. Consider a query window 
w = 26. The binary representation of b = 13 is 1101, and therefore the query is 
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partitioned into three sub-windows wo = 2, w2 = 8, and w3 = 16. Figure 1 1.7 
shows the decomposition of the query and the composition of the aggregate 
together. The current aggregate over a window of size w = 26 is approximated 
using the extents of MBRs that contain the corresponding sub-aggregates. The 
computation is approximate in the sense that the algorithm returns an interval 
F such that the upper coordinate F[2] is always greater than or equal to the true 
aggregate. If F[2] is larger than the threshold T, the most recent subsequence of 
length w is retrieved, and the true aggregate is computed. If this value exceeds 
the query threshold, an alarm is raised. The complete algorithm is shown in 
Algorithm 2. 

: : 
I .  

MBRs 
I : I 1 in level-3 

aggregate quely &26 

Figure 11.7. Aggregate query decomposition and approximation composition for a query win- 
dow of size w = 26. 

The accuracy. The false alarm rate of this approximation is quantified as 
follows: assume that bursts of events are monitored, i.e., F is SUM. Let X 
denote the sum within sliding window w = bW. If the threshold T is set to 
px (1  - @ ( p )  ) , the inequation 
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Algorithm 2 Aggregate-Query(Stream S, Window w, Threshold T) 

I :begin procedure 
2: initialize t to t,,, the current discrete time; 
3: partition w into n parts as wl, w2, . . . , wn; 
4: initialize aggregate T ;  
5: for i := 1 to i := n do 
6: find the resolution level j such that Wi = W2J; 
7: MBR B contains the feature on S[t - wi + 1 : t]; 
8: merge sub-aggregate B to T := F(B, F); 
9: adjust offset to t := t - Wi for next sub-window; 

10: end for 
11: if T < F[2] then 
12: retrieve S[tnow - w + 1 : t,,]; 
13: i f ~ ~ F ( S [ t , ~ ~ - ~ + 1 : t ~ ~ ~ ] )  then 
14: raise an alarm; 
15: end if 
16: end if 
17:end procedure 

holds for a given sufficiently small p, where @ denotes the normal cumulative 
distribution function. Monitor the burst based on windows with size Tw such 
that 1 5 T < 2, where 2j-I W < w < 2 j ~ .  This approach corresponds to 
monitoring the burst via one of the levels in the index structure [31]. Let Z 
denote the sum within sliding window Tw. We assume that 

Assuming pz  = Tp(X), the false alarm rate is equal to P r (Z  > T), which 
implies 

According to Equation 1 1.9, for a fixed value of p, the smaller T is, the smaller 
is the false alarm rate. If sub-aggregates for sub-windows wl,w2,. . .,wn are 
used for computing the final aggregate on a given query window of size w and 
threshold T, a smaller T can be achieved. The sub-aggregate for sub-window wi 
is stored in an MBR at level ji. An MBR at level ji corresponds to a monitoring 
window of size 23iW + c - 1. Then, effectively a burst is monitored using a 
window of size bW + log b * (c  - 1) such that: 

T' = 
bW+logb*(c-1) logb* (c- 1) 

bW 
= 1 +  bW 
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where T' decreases with increasing b. For example, for c = W = 64 and 
b = 12, we have T' = 1.2987 and T = 1.3333. This implies that the sub- 
window sum approximation reduces the false alarm rate to a minimal amount 
with the optimal being at T = 1. In fact, the optimal is reached with c = 1. 
However the space consumption in this case is much larger. 

3.2 Monitoring a pattern query 
In this class of queries, a pattern database is continuously monitored over dy- 
namic data streams: "Identify all temperature sensors in a weather monitoring 
sensornet that currently exhibit an interesting trend". Formally, given a query 
sequence Q and a threshold value r ,  find the set of streams that are within 
distance r to the query sequence Q. The distance measure we adopt is the 
Euclidean distance (L2) between the corresponding normalized sequences. We 
normalize a window of values x[l], . . . , x[w] as follows: 

thereby mapping it to the unit hyper-sphere. We establish the notion of similarity 
between sequences as follows: a stream sequence x and a query sequence Q 
are considered to be r-similar if 

The online algorithm. Given a query sequence Q and a threshold value 
r ,  partition Q into multiple sub-queries, Q1, Q2, . . . ,,Qn such that 0 < jl < 
. . . < ji < ji+l < . . . < jn < J, and lQil = W2Ji. Assume that the first 
sub-query Q1 has resolution jl. A range query with radius r is performed 
on the index constructed at resolution jl. The initial candidate box set R is 
refined using the hierarchical radius optimization proposed in [16]. Briefly, 
for each MBR B E R, this technique is used to refine the original radius r to 
r' = Jr2 - dmin(Q1, B)2 for the next sub-query Q2, where dmin(p, B) for a 
point p and an MBR B is defined as the minimum Euclidean distance of the 
query point p to the MBR B 1251. The same procedure is applied recursively 
until the last sub-query Q, is processed, resulting in a final set of MBRs C to 
check for true matches. The complete algorithm is shown in Algorithm 3. 

The batch algorithm. Let the update rate for each index level j be Tj = W. 
The stream is divided into W-step sliding windows of size w. Let IS1 denote 
the size of the stream. Then, there are L(/SI - w + 1)IWJ many such windows. 
Given a query sequence Q, W-many prefixes of size w are extracted as QIO : 
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Algorithm 3 Pattern-Query-Online(Query Q) 
1:begin procedure 
2: partition Q into n parts as Q1, Q2, . . . , Q,; 
3: find the resolution level jl such that IQ1 ( = W2j1; 
4: R := Range-Query(Indexj,, DWT(Q~),Q.T); 
5: C := Hierarchicalliadiusliefinement(R,Q); 
6: post-process C to discard false alarms; 
7:end procedure 

w-11, Q [ l  : w],  . . . , Q[W-1 : w+W-11. Eachprefixqueryisusedtoidentify 
potential candidates. In order to clarify the ensuing development, we note that 
a single prefix query would suffice in case an online algorithm with T j  = 1 was 
used for index constmction. This approach is similar to the technique proposed 
in [22], where a single resolution index is constructed using a sliding window 
of maximum allowable size w that satisfies 1 5 [(min(Q) - W + l ) / w J  . Note 
that min(Q) is the a priori information regarding the minimum query length. 
However, in a multi-resolution index, a given query can be answered using any 
index at resolution j that satisfies 1 5 [(I Q I - W + 1) / (2j W ) ]  . The accuracy 
of this multi-resolution search algorithm can be improved by extracting disjoint 
windows along with each prefix in order to refine the original query radius using 
a multi-piece search technique [13]. The number of such disjoint windows is at 
most p = [(I&[ - W + 1)/wj .  We illustrate these concepts on a query window 
of size IQI = 9 as shown in Figure 11.8, where J = 1 and W = 2. The prefixes 
are shown as i = 0 and i = 1 along with the corresponding disjoint windows. 
Each and every feature extracted over Q is inserted into a query MBR B. The 
MBR B is extended in each dimension by a fraction of the query radius, i.e., 

A range query is performed on the index at level j using B, and a set R 
of candidate features is retrieved. The set R is post-processed to discard false 
alarms. The complete algorithm is shown in Algorithm 4. 

3.3 Monitoring a correlation query 
In this class of queries, all stream pairs that are correlated within a user spec- 
ified threshold r at some level of abstraction are reported continuously. The 
correlation between two sequences x and y can be reduced to the Euclidean 
distance between their z-norms [30]. The z-norm of a sequence x [1], . . . , x[w] 
is defined as follows: 

where p, is the arithmetic mean. The correlation coefficient between sequences 
x and y is computed using the L2 distance between 2 and $ as 1 - L; (2,$)/2.  
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query MBR B 

of size w=4 

feature extraction 

e 0 0 e (6 wdal incoming 
stream 

Figure 11.8. Subsequence query decomposition for a query window of size (Q/  = 9. 

Algorithm 4 Pattern-QueryBatch(Query Q) 
1 :begin procedure 
2: find the largest level j such that 2 j  W + W - 1 5 IQI; 
3: initialize query MBR B to empty; 
4: let w be equal to 2.7 W, level-j sliding window size; 
5: fori := 0 t o i  := W - 1 do 
6: for k := 0 to k := [(/&I - Z)/W] do 
7: extract lcth disjoint subsequence of the query 
8: sequence into y := Q[i + lcw : i + (k + l )w  - 11; 
9: insert DWT(C) into MBR B;  

lo: end for 
1 1 :  end for 
12: compute radius refinement factor p := [(I&/ - W + l ) /w j  ; 
13: enlarge query MBR B by Q.r/@; 
14: R := Range-Query(Indexj, B); 
15: post-process R to discard false alarms; 
16:end procedure 

The algorithm. Whenever a new feature Fj of a stream S is computed at 
level j ,  a range query on the index at level j is performed with Fj as the query 
center and the radius set to the correlation threshold r. In a system with M 
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synchronized streams, this involves execution of O ( M )  range queries at every 
data arrival. 

4. Related Work 
Shifted-Wavelet Tree (SWT) is a wavelet-based summary structure proposed 
for detecting bursts of events on a stream of data [31]. For a given set of query 
windows wl,wa,. . .,w, such that 2 L ~  5 wl 5 wz 5 . . . 5 w, 5 2'W, 
SWT maintains U - L moving aggregates using a wavelet tree for incremental 
computation. A window wi is monitored by the lowest level j ,  L 5 j 5 U, that 
satisfies wi < 2j W. Therefore, associated with each level j, L 5 j 5 U, there 
is a threshold ~j equal to the smallest of the thresholds of windows wil, . . . , wi 3 . 

monitored by that level. Whenever the moving sum at some level j exceeds 
the level threshold ~ j ,  all query windows associated with this level are checked 
using a brute force approach. 

MR-Index addresses variable length queries over time series data [16]. Wavelets 
are used to extract features from a time series at multiple resolutions. At each 
resolution, a set of feature vectors are combined into an MBR and stored se- 
quentially in the order they are computed. A given query is decomposed into 
multiple sub-queries such that each sub-query has resolution corresponding to 
a resolution at the index. A given set of candidate MBRs are refined using each 
query as a filter to prune out non-potential candidates. 

Versions of piecewise constant approximation are proposed for time series 
similarity matching. Specifically, adaptive piecewise constant approximation 
(APCA) represents data regions of great fluctuations with several short seg- 
ments, while data regions of less fluctuations are represented with fewer, long 
segments [17]. An extension of this approximation allows error specification 
for each point in time [23]. The resulting approach can approximate data with 
fidelity proportional to its age. GeneralMatch, a refreshingly new idea in simi- 
larity matching, divides the data sequences into disjoint windows, and the query 
sequence into sliding windows [22]. This approach is the dual of the conven- 
tional approaches, i.e., dividing the data sequence into sliding windows, and 
the query sequence into disjoint windows. The overall framework is based on 
answering pattern queries using a single-resolution index built on a specific 
choice of window size. The allowed window size depends on the minimum 
query length, which has to be provided a-priori before the index construction. 

Methods based on multi-variate linear regression are considered for analyz- 
ing co-evolving time sequences [28]. For a given stream S, its current value 
(dependent variable) is expressed as a linear combination of values of the same 
and other streams (independent variables) under sliding window model. Given 
v independent variables and a dependent variable y with N samples each, the 
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model identifies the best b independent variables in order to compute the current 
value of the dependent variable in O(Nbv2) time. 

Statstream is a state of the art system proposed for monitoring a large num- 
ber of streams in real time [30]. It subdivides the history of a stream into a 
fixed number of basic windows and maintains DFT coefficients for each basic 
window. This allows a batch update of DFT coefficients over the entire history. 
It superimposes an orthogonal regular grid on the feature space, and partitions 
the space into cells of diameter r ,  the correlation threshold. Each stream is 
mapped to a number of cells (exactly how many depends on the "lag time") in 
the feature space based on a subset of its DFT coefficients. It uses proximity in 
this feature space to report correlations [6] .  

5. Future Directions 
We are witnessing the blurring of the traditional boundaries between Networks 
and Databases, especially in the emerging areas of sensor and peer-to-peer net- 
works. Data stream processing in these application domains requires networked 
data management, solutions of which borrow ideas from both disciplines. We 
believe that researchers from these two communities should share their ex- 
pertise, results, terminologies, and contributions. This exchange can promote 
ideas that will influence and foster continued research in the areas of sensor 
and peer-to-peer networks. The following three research avenues are promis- 
ing future directions to pursue further: (1) Distributed monitoring systems, (2) 
Probabilistic modeling of sensor networks, and (3) Publish-subscribe systems. 

5.1 Distributed monitoring systems 
In today's rapidly growing networks, data streams arrive at widely dispersed lo- 
cations. Assume that a system administrator wants to analyze the local network 
traffic and requires access to data collections that are maintained at different 
locations. The rapid growth of such collections fed by data streams makes it 
virtually impossible to simply store a collection at every location where it is 
possibly queried. This prompts a need to design more scalable approaches for 
disseminating the information of a data stream. Each peer monitoring station 
characterizes its stream of data in terms of a model (signature) and transmits 
this information to a central site using an adaptive communication protocol. 
The abstraction levels of signatures collected at the server can be quite differ- 
ent. A higher level corresponds to coarser statistics. Therefore, it contains less 
representative information, and incurs smaller transmission cost. A lower level 
corresponds to finer statistics. Therefore, it has more characteristics informa- 
tion; however it incurs larger transmission cost. Naturally, there is an interplay 
of opposing factors, i.e., accuracy vs. overhead. At the server, tasks that in- 
volve information from multiple clients are executed. The question is to find 
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an optimal data acquisition strategy that maximizes the conservation of limited 
system resources [ l  11. 

A more specific scenario arises in a sensor-net: anomalous event detection 
is a collaborative task, which involves aggregation of measurements from a 
number of sensors. Only if a certain number of these sensors signify an alarm 
and a consensus is reached, a drill-down analysis is performed to collect more 
information and take affirmative steps. Afier computing a local fingerprint on its 
stream of data, each sensor needs to difise this fingerprint into the net in order 
to reach a consensus on the alarming incidents [2]. This work can introduce 
"reactive monitoring" into sensor networks. 

5.2 Probabilistic modeling of sensor networks 
Embedded low-power sensing devices revolutionize the way we collect and 
process information for building emergency response systems. Miniature sen- 
sors are deployed to monitor ever-changing conditions in their surroundings. 
Statistical models such as stochastic models and multivariate regression enable 
capturing intra-sensor and inter-sensor dependencies in order to model sensor 
network data accurately. Such models can be used in backcasting missing sen- 
sor values, forecasting future data values, and guiding efficient data acquisition. 
Current mathematical models allow decomposing the main research problem 
into subproblems [14]. This in turn leads to a natural way of computing model 
components incrementally and in a distributed manner. 

Regressive models are proposed for computing inter-scale and intra-scale 
correlations among wavelet coefficients [24]. The magnitude of these coef- 
ficients is used for detecting interesting events such as seasonal components 
and bursts of events. The wavelet coefficients at a given level j in the multi- 
resolution index are expressed as a function of the k previous coefficients at 
the same level plus noise 6 (optionally including coefficients from upper levels) 

wherethesymbolxi,O 5 i < k,denotesx[t-(i+1)*2jW+l : t- i*2jW], 
and the term ej,t denotes the noise added. Recursive Least Squares is used to 
update these regressive models incrementally [29]. Further research efforts are 
encouraged on exploring how to use these models for compressing and querying 
stream information regarding the past, and more importantly in a feedback loop 
for setting the query window parameters automatically and in a semantically 
meaningful manner. 

5.3 Content distribution networks 
Publish-and-subscribe services provide the ability to create persistent queries or 
subscriptions to new content. In a typical content based pub-sub system, con- 
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tent providers send structured content to instances of pub-sub service, which 
are responsible for sending messages to the subscribers of each particular con- 
tent [27]. The pub-sub system forms a semantic layer on the top of a monitoring 
infrastructure by providing a query interface: events of interest are specified 
using an appropriate continuous query language [19]. Furthermore, it real- 
izes the reactive part of the whole infrastructure by sending notifications about 
events of interest to users. Recent advances in application layer multicast for 
content delivery address the scalability issues that usually arise in data stream 
applications with large receiver sets [4]. However, the problem of providing 
real-time guarantees for time-critical user tasks under stringent constraints still 
needs exploration. 

6. Chapter Summary 
In this chapter, we presented a space and time efficient architecture to extract 
features over streams and index these features for improving query performance. 
The maintenance cost in the index structure is leveraged by computing transfor- 
mation coefficients online: the coefficients at higher levels are computed over 
the index that stores the coefficients at lower levels. This approach decreases 
per-item processing time considerably, and minimizes the space required for 
incremental computation. The index structure has an adaptive time-space com- 
plexity depending on the update rate and the number of coefficients maintained, 
and guarantees the approximation quality by provable error bounds. 
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Abstract We consider the problem of capturing correlations and finding hidden variables 
corresponding to trends on collections of time series streams. Our proposed 
method, SPIRIT, can incrementally find correlations and hidden variables, which 
summarise the key trends in the entire stream collection. It can do this quickly, 
with no buffering of stream values and without comparing pairs of streams. More- 
over, it is any-time, single pass, and it dynamically detects changes. The dis- 
covered trends can also be used to immediately spot potential anomalies, to do 
efficient forecasting and, more generally, to dramatically simplify further data 
processing. 

Introduction 
In this chapter, we consider the problem of capturing correlations and finding 

hidden variables corresponding to trends on collections of semi-infinite, time 
series data streams, where the data consist of tuples with n numbers, one for 
each time tick t. 

Streams often are inherently correlated (e.g., temperatures in the same build- 
ing, traffic in the same network, prices in the same market, etc.) and it is possible 
to reduce hundreds of numerical streams into just a handful of hidden variables 
that compactly describe the key trends and dramatically reduce the complexity 
of further data processing. We propose an approach to do this incrementally. 
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(a) Sensor measurements (b) Hidden variables 

Figure 12.1. Illustration of problem. Sensors measure chlorine in drinking water and show a 
daily, near sinusoidal periodicity during phases 1 and 3. During phase 2, some of the sensors are 
"stuck" due to a major leak. The extra hidden variable introduced during phase 2 captures the 
presence of a new trend. SPIRIT can also tell us which sensors participate in the new, "abnormal" 
trend (e.g., close to a construction site). In phase 3, everything returns to normal. 

We describe a motivating scenario, to illustrate the problem we want to 
solve. Consider a large number of sensors measuring chlorine concentration in 
a drinkable water distribution network (see Figure 12.1, showing 15 days worth 
of data). Every five minutes, each sensor sends its measurement to a central 
node, which monitors and analyses the streams in real time. 

The patterns in chlorine concentration levels normally arise from water de- 
mand. If water is not refreshed in the pipes, existing chlorine reacts with pipe 
walls and micro-organisms and its concentration drops. However, if fresh wa- 
ter flows in at a particular location due to demand, chlorine concentration rises 
again. The rise depends primarily on how much chlorine is originally mixed 
at the reservoirs (and also, to a small extent, on the distance to the closest 
reservoir-as the distance increases, the peak concentration drops slightly, due 
to reactions along the way). Thus, since demand typically follows a periodic 
pattern, chlorine concentration reflects that (see Figure 12.la, bottom): it is 
high when demand is high and vice versa. 

Assume that at some point in time, there is a major leak at some pipe in 
the network. Since fresh water flows in constantly (possibly mixed with debris 
from the leak), chlorine concentration at the nodes near the leak will be close 
to peak at all times. 

Figure 12.1 a shows measurements collected fiom two nodes, one away fiom 
the leak (bottom) and one close to the leak (top). At any time, a human operator 
would like to know how many trends (or hidden variables) are in the data and 
ask queries about them. Each hidden variable essentially corresponds to a group 
of correlated streams. 

In this simple example, SPIRIT discovers the correct number of hidden vari- 
ables. Under normal operation, only one hidden variable is needed, which 
corresponds to the periodic pattern (Figure 12.lb, top). Both observed vari- 
ables follow this hidden variable (multiplied by a constant factor, which is the 
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participation weight of each observed variable into the particular hidden vari- 
able). Mathematically, the hidden variables are the principal components of the 
observed variables and the participation weights are the entries of the principal 
direction vectors (more precisely, this is true under certain assumptions, which 
will be explained later). 

However, during the leak, a second trend is detected and a new hidden vari- 
able is introduced (Figure 12.lb, bottom). As soon as the leak is fixed, the 
number of hidden variables returns to one. If we examine the hidden variables, 
the interpretation is straightforward: The first one still reflects the periodic de- 
mand pattern in the sections of the network under normal operation. All nodes 
in this section of the network have a participation weight of M 1 to the "periodic 
trend" hidden variable and m 0 to the new one. The second hidden variable 
represents the additive effect of the catastrophic event, which is to cancel out the 
normal pattern. The nodes close to the leak have participation weights M 0.5 
to both hidden variables. 

Summarising, SPIRIT can tell us the following (Figure 12.1): (i) Under nor- 
mal operation (phases 1 and 3), there is one trend. The corresponding hidden 
variable follows a periodic pattern and all nodes participate in this trend. All 
is well. (ii) During the leak (phase 2), there is a second trend, trying to cancel 
the normal trend. The nodes with non-zero participation to the corresponding 
hidden variable can be immediately identified (e.g., they are close to a construc- 
tion site). An abnormal event may have occurred in the vicinity of those nodes, 
which should be investigated. 

Matters are further complicated when there are hundreds or thousands of 
nodes and more than one demand pattern. However, as we show later, SPIRIT 
is still able to extract the key trends from the stream collection, follow trend 
drifts and immediately detect outliers and abnormal events. Besides providing 
a concise summary of key trendslcorrelations among streams, SPIRIT can suc- 
cessfully deal with missing values and its discovered hidden variables can be 
used to do very efficient, resource-economic forecasting. 

There are several other applications and domains to which SPIRIT can be 
applied. For example, (i) given more than 50,000 securities trading in US, on a 
second-by-second basis, detect patterns and correlations [27], (ii) given traffic 
measurements [24], find routers that tend to go down together. 

Contributions 
The problem of pattern discovery in a large number of co-evolving streams 

has attracted much attention in many domains. We introduce SPIRIT (Stream- 
ing Pattern dIscoveRy in multiple Time-series), a comprehensive approach to 
discover correlations that effectively and efficiently summarise large collections 
of streams. SPIRIT satisfies the following requirements: 
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(i) It is streaming, i.e., it is incremental, scalable, any-time. It requires very 
memory and processing time per time tick. In fact, both are independent of the 
stream length t. 

(ii) It scales linearly with the number of streams n, not quadratically. This 
may seem counter-intuitive, because the nahe method to spot correlations 
across n streams examines all O(n2) pairs. 

(iii) It is adaptive, and fully automatic. It dynamically detects changes (both 
gradual, as well as sudden) in the input streams, and automatically determines 
the number k of hidden variables. 

The correlations and hidden variables we discover have multiple uses. They 
provide a succinct summary to the user, they can help to do fast forecasting 
and detect outliers, and they facilitate interpolations and handling of missing 
values, as we discuss later. 

The rest of the chapter is organized as follows: Section 1 discusses related 
work, on data streams and stream mining. Section 2 and 3 overview some of 
the background. Section 5 describes our method and Section 6 shows how its 
output can be interpreted and immediately utilized, both by humans, as well 
as for further data analysis. Section 7 discusses experimental case studies that 
demonstrate the effectiveness of our approach. In Section 8 we elaborate on 
the efficiency and accuracy of SPIRIT. Finally, in Section 9 we conclude. 

1. Related work 
Much of the work on stream mining has focused on finding interesting pat- 

terns in a single stream, but multiple streams have also attracted significant 
interest. Ganti et al. [8] propose a generic framework for stream mining. 10 
propose a one-pass k-median clustering algorithm. 6 construct a decision tree 
online, by passing over the data only once. Recently, 12 and 22 address the prob- 
lem of finding patterns over concept drifting streams. 19 proposed a method 
to find patterns in a single stream, using wavelets. More recently, 18 consider 
approximation of time-series with amnesic functions. They propose novel tech- 
niques suitable for streaming, and applicable to a wide range of user-specified 
approximating functions. 

15 propose parameter-free methods for classic data mining tasks (i.e., clus- 
tering, anomaly detection, classification), based on compression. 16 perform 
clustering on different levels of wavelet coefficients of multiple time series. 
Both approaches require having all the data in advance. Recently, 2 propose a 
framework for Phenomena Detection and Tracking (PDT) in sensor networks. 
They define a phenomenon on discrete-valued streams and develop query execu- 
tion techniques based on multi-way hash join with PDT-specific optimizations. 

CluStream (1) is a flexible clustering framework with online and offline 
components. The online component extends micro-cluster information (26) 
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by incorporating exponentially-sized sliding windows while coalescing micro- 
cluster summaries. Actual clusters are found by the offline component. Stat- 
Stream (27) uses the DFT to summarise streams within a finite window and then 
compute the highest pairwise correlations among all pairs of streams, at each 
timestamp. BRAID (20) addresses the problem of discovering lag correlations 
among multiple streams. The focus is on time and space efficient methods for 
finding the earliest and highest peak in the cross-correlation functions between 
all pairs of streams. Neither CluStream, Statstream or BRAID explicitly focus 
on discovering hidden variables. 

9 improve on discovering correlations, by first doing dimensionality reduc- 
tion with random projections, and then periodically computing the SVD. How- 
ever, the method incurs high overhead because of the SVD re-computation 
and it can not easily handle missing values. Also related to these is the work 
of 4, which uses a different formulation of linear correlations and focuses on 
compressing historical data, mainly for power conservation in sensor networks. 
MUSCLES (24) is exactly designed to do forecasting (thus it could handle 
missing values). However, it can not find hidden variables and it scales poorly 
for a large number of streams n, since it requires at least quadratic space and 
time, or expensive reorganisation (selective MUSCLES). 

Finally, a number of the above methods usually require choosing a sliding 
window size, which typically translates to buffer space requirements. Our 
approach does not require any sliding windows and does not need to buffer any 
of the stream data. 

In conclusion, none of the above methods simultaneously satisfy the require- 
ments in the introduction: "any-time" streaming operation, scalability on the 
number of streams, adaptivity, and full automation. 

2. Principal component analysis (PCA) 
Here we give a brief overview of PCA (13) and explain the intuition behind 

our approach. We use standard matrix algebra notation: vectors are lower-case 
bold, matrices are upper-case bold, and scalars are in plain font. The transpose 
ofmatrix X is denoted by xT. In the following, xt - [x t ,~  xt,2 - . - xt,nIT E Rn 
is the column-vector. of stream values at time t. We adhere to the common 
convention of using column vectors and writing them out in transposed form. 
The stream data can be viewed as a continuously growing t x n matrix Xt  := 
[xl xz . xtIT E Rtxn, where one new row is added at each time tick t. In 
the chlorine example, xt is the measurements colurnn-vector at t over all the 
sensors, where n is the number of chlorine sensors and t is the measurement 
timestamp. 

Typically, in collections of n-dimensional points xt - [xt,1 . . . , xanIT, t = 
1,2,  . . . , there exist correlations between the n dimensions (which correspond 
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(a) Original wl (b)-Update process (c) Resulting wl 

Figure 12.2. Illustration of updating wl when a new point xt+l arrives. 

to streams in our setting). These can be captured by principal components 
analysis (PCA). Consider for example the setting in Figure 12.2. There is a 
visible linear correlation. Thus, if we represent every point with its projection 
on the direction of wl ,  the error of this approximation is very small. In fact, 
the first principal direction wl ,  is the optimal in the following sense. 

DEFINITION 12.1 (FIRST PRINCIPAL COMPONENT) Given a collection of 
n-dimensional vectors x, E Rn, I- = 1,2,.  .., t, the first principal direction 
w l  E Rn is the vector minimizing the sum of squared residuals, i.e., 

Theprojection of x, on wl  is the fist principal component (PC) yT,l := wyx,, 
I -=  1, ..., t. 
Note that, since llwlll = 1, we have (wlwT)x, = (wTx,)wl = y,,lwl =: 
2,, where 2, is the projection of y,,l back into the original n-D space. That 
is, 2, is the reconstruction of the original measurements from the first PC y , ~ .  
More generally, PCA will produce k vectors wl ,  w2, ..., wr, such that, if we 
represent each n-D data point xt := [ x t , ~  - xt,,] with its k-D projection 

T yt := [wl xt ... w:xtlT, then this representation minimises the squared error 
C, llxt - kt1I2. Furthermore, the principal directions are orthogonal, so the 
principal components yT,i, 1 5 i 5 k are by construction uncorrelated, i.e., if 

.. Y(i) := [ Y ~ , ~ ,  ..., yt,i, .IT is the stream of the i-th principal component, then 
(y(i))Ty(j) = 0 if i # j .  

OBSERVATION 2.1 (DIMENSIONALITY REDUCTION) g w e  represent each 
n-dimensional point x, E Rn using all n principal components, then the error 
llx, - 2,11 = 0. Howevec in typical datasets, we can achieve a very small 
error using only k principal components, where k << n. 

In the context of the chlorine example, each point in Figure 12.2 would 
correspond to the 2-D projection of x, (where 1 5 I- 5 t) onto the first two 
principal directions, w l  and w2, which are the most important according to the 
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Table 12.1. Description of notation. 

Symbol Description 

x,  ... Column vectors (lowercase boldface). 
A, ... Matrices (uppercase boldface). 

The n stream values xt := [ X ~ J  xt,nIT at time t .  
Number of streams. 
The i-th participation weight vector (i.e., principal direction). 
Number of hidden variables. 
Vector of hidden variables (i.e., principal components) for xt ,  i.e., 
Yt [yt,l yt,k]T := [ w T x ~  ' ' ' w r x t l T .  

Reconstruction of xt from the k hidden variable values, i.e., 
kt  := yt,lwl + . . . + Yt,kWk. 

Total energy up to time t. 
Total energy captured by the i-th hidden variable, up to time t. 
Lower and upper bounds on the fraction of energy we wish to maintain via 
SPIRIT'S approximation. 

distribution of {x, I 1 5 T < t}. The principal components y,,~ and y,,a are 
the coordinates of these projections in the orthogonal coordinate system defined 
by wl and w2. 

However, batch methods for estimating the principal components require 
time that depends on the duration t, which grows to infinity. In fact, the principal 
directions are the eigenvectors of xTx~, which are best computed through the 
singular value decomposition (SVD) of Xt. Space requirements also depend 
on t. Clearly, in a stream setting, it is impossible to perform this computation 
at every step, aside from the fact that we don't have the space to store all past 
values. In short, we want a method that does not need to store any past values. 

3. Auto-regressive models and recursive least squares 
In this section we review some of the background on forecasting. 

Auto-regressive (AR) modeling 
Auto-regressive models are the most widely known and used-more infor- 

mation can be found in, e.g., (3). The main idea is to express xt as a function 
of its previous values, plus (filtered) noise et: 

where W is a the forecasting window size. Seasonal variants (SAR, SAR(1)MA) 
also use window offsets that are multiples of a single, fixed period (i.e., besides 
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terms of the form yt-i, the equation contains terms of the form Yt-si where S 
is a constant). 

If we have a collection of n time series xt,i, 1 5 i 5 n then multivariate AR 
simply expresses xt,i as a linear combination of previous values of all streams 
(plus noise), i.e., 

Recursive Least Squares (RLS) 
Recursive Least Squares (RLS) is a method that allows dynamic update of 

a least-squares fit. The least squares solution to an overdetermined system 
of equations X b  = y where X E RmXk (measurements), y E Rm (output 
variables) and b E Rk (regression coefficients to be estimated) is given by 
the solution of xTxb = xTy. Thus, all we need for the solution are the 
projections 

T P - X ~ X  and q = X  y 
We need only space O(lc2 + lc) = 0(lc2) to keep the model up to date. When 
a new row xm+l E Rk and output ym+l arrive, we can update 

In fact, it is possible to update the regression coefficient vector b without ex- 
plicitly inverting P to solve Pb = p-lq. In particular (see, e.g., (25)) the 
update equations are 

T G + G - (1 + ~ ~ + ~ ~ x ~ + l ) - ~ ~ x ~ + l x ~ + ~ ~  (12.3) 
T b + b - Gxm+l(xm+ib - ~ m + l ) ,  (12.4) 

where the matrix G can be initialized to G + €1, with 6 a small positive number 
and I the k x lc identity matrix. 

RLS and AR In the context of auto-regressive modeling (Eq. 12. I), we have 
one equation for each stream value xw+l, . . . , s t ,  . . ., i.e., the m-th row of the 
X matrix above is 

and zm = x,, for t - w = m = 1,2, . . . (t > w). In this case, the solution 
vector b consists precisely of the auto-regression coefficients in Eq. 12.1, i.e., 

b = [41 42 " '  4,IT E RW. 

RLS can be similarly used for multivariate AR model estimation. 
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4. MUSCLES 
MUSCLES (MUlti-Sequence LEast Squares) (24) tries to predict the value of 

one stream, xt,i based on the previous values from all streams, Xt-lj, I > 1 , l  I 
j < n and current values from other streams, Xt,j, j # i. It uses multivariate 
autoregression, thus the prediction &,i for a given stream i is, similar to Eq. 12.2 

and employs RLS to continuously update the coefficients & such that the 
prediction error 

t 

is minimized. Note that the above equation has one dependent variable (the 
estimate kt,i) and v = W * n + n - 1 independent variables (the past values of 
all streams plus the current values of all other streams except 2).  

Exponentially forgetting MUSCLES employs a forgetting factor 0 < X < 1 
and minimizes instead 

t 

For X < 1, errors for old values are downplayed by a geometric factor, and 
hence it permits the estimate to adapt as sequence characteristics change. 

Selective MUSCLES 
In case we have too many time sequences (e.g., n = 100,000 nodes in 

a network, producing information about their load every minute), even the 
incremental version of MUSCLES will suffer. The solution we propose is based 
on the conjecture that we do not really need information from every sequence to 
make a good estimation of a missing value much of the benefit of using multiple 
sequences may be captured by using only a small number of carefully selected 
other sequences. Thus, we propose to do some preprocessing of a training set, 
to find a promising subset of sequences, and to apply MUSCLES only to those 
promising ones (hence the name Selective MUSCLES). 
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Assume that sequence i is the one notoriously delayed and we need to esti- 
mate its "delayed" values xt,i. For a given tracking window span W, among 
the v = W * n + n - 1 independent variables, we have to choose the ones 
that are most useful in estimating the delayed value of xtli. More generally, we 
want to solve the following 

PROBLEM 4.1 (SUBSET SELECTION) Given v independent variables 
XI,  x2, . . . , x, and a dependent variable y with N samples each, find the best 
b (< v) independent variables to minimize the mean-square error for 9 for the 
given samples. 

We need a measure of goodness to decide which subset of b variables is the 
best we can choose. Ideally, we should choose the best subset that yields the 
smallest estimation error in the future. Since, however, we don't have future 
samples, we can only infer the expected estimation error (EEE for short) from 
the available samples as follows: 

where S is the selected subset of variables and Gs [t] is the estimation based on S 
for the t-th sample. Note that, thanks to Eq. 12.3, EEE(S) can be computed in 
O ( N .  JIS112) time. Let's say that we are allowed to keep only b = 1 independent 
variable. Which one should we choose? Intuitively, we could try the one that 
has the highest (in absolute value) correlation coefficient with y. It turns out 
that this is indeed optimal: (to satisfy the unit variance assumption, we will 
normalize samples by the sample variance within the window.) 

LEMMA 12.2 Given a dependent variable y, and v independent variables with 
unit variance, the best single variable to keep to minimize EEE(S) is the one 
with the highest absolute correlation coeficient with y. 

Proof For a single variable, if a is the least squares solution, we can express 
the error in matrix form as 

Let dandpdenote I I x ~ ~ ~ ~  and (xTy),respectively. Sincea = d-lp, EEE({xi)) = 
11 Y 1 1 2  - p2d-l. To minimize the error, we must choose xi which maximize p2 
and minimize d. Assuming unit-variance (d = I), such xi is the one with the 
biggest correlation coefficient to y. This concludes the proof. 

The question is how we should handle the case when b > 1. Normally, we 
should consider all the possible groups of b independent variables, and try to 
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pick the best. This approach explodes combinatorially; thus we propose to 
use a greedy algorithm. At each step s, we select the independent variable 
x, that minimizes the EEE for the dependent variable y, in light of the s - 1 
independent variables that we have already chosen in the previous steps. 

Bottleneck of the algorithm is clearly the computation of EEE. Since it 
computes EEE approximately O(v . b) times and each computation of EEE 
requires O(N . b2) in average, the overall complexity mounts to O(N eve b3). To 
reduce the overhead, we observe that intermediate results produced for EEE(S) 
can be re-used for EEE(S U {x)). 

LEMMA 12.3 The complexity of the greedy selection algorithm is O ( N  eve b2). 

Proof Let S+ be S U {x). The core in computing EEE(S+) is the inverse of 
Ds+ = (X;+X,+). Thanks to block matrix inversion formula (14) (p. 656) 
and the availability of D;' from the previous iteration step, it can be computed 
in 0 ( N  IS I + IS 1 2). Hence, summing it up over v - IS I remaining variables 
for each b iteration, we have O(N . v . b2 + v . b3) complexity. Since N >> b, 
it reduces to O ( N  - v - b2). 

We envision that the subset-selection will be done infrequently and off-line, say 
every N = W time-ticks. The optimal choice of the reorganization windowW 
is beyond the scope of this paper. Potential solutionsinclude (a) doing reor- 
ganization during off-peak hours, (b) triggering a reorganization whenever the 
estimation error for by increases above an application-dependent threshold etc. 
Also, by normalizing the training set, the unit-variance assumption in Theorem 
1 can be easily satisfied. 

5. Tracking correlations and hidden variables: SPIRIT 
In this section we present our framework for discovering patterns in multiple 

streams. In the next section, we show how these can be used to perform ef- 
fective, low-cost forecasting. We use auto-regression for its simplicity, but our 
framework allows any forecasting algorithm to take advantage of the compact 
representation of the stream collection. 

Problem definition Given a collection of n co-evolving, semi-infmite streams, 
producing a value xt,j, for every stream 1 5 j 5 n and for every time-tick 
t = 1,2, . . ., SPIRIT does the following: (i) Adapts the number k of hidden 
variables necessary to explainlsumrnarise the main trends in the collection. (ii) 
Adapts theparticipation weights wi,j of the j-th stream on the i-th hidden vari- 
able (1 5 j 5 n and 1 5 i 5 k),  so as to produce an accurate summary of the 
stream collection. (iii) Monitors the hidden variables yt,i, for 1 5 i 5 k .  (iv) 
Keeps updating all the above efficiently. 
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More precisely, SPIRIT operates on the column-vectors of observed stream 
values xt E [x~J ,  . . . , xt,nIT and continually updates the participation weights 
wi,j. The participation weight vector wi for the i-th principal direction is 
wi := [ w ~ , ~  . . . wilnIT. The hidden variables yt [yt,i,. . . , yt,k]T are the 
projections of xt onto each wi, over time (see Table 12.1), i.e., 

SPIRIT also adapts the number k of hidden variables necessary to capture most 
of the information. The adaptation is performed so that the approximation 
achieves a desired mean-square error. In particular, let kt  = [zt ,~ . zt,nIT be 
the reconstruction of xt, based on the weights and hidden variables, defined by 

k or more succinctly, jZt = Yi,tWi. 
In the chlorine example, xt is the n-dimensional column-vector of the orig- 

inal sensor measurements and yt is the hidden variable column-vector, both at 
time t. The dimension of yt is 1 beforelafter the leak (t < 1500 or t > 3000) 
and 2 during the leak (1500 5 t 5 3000), as shown in Figure 12.1. 

DEFINITION 12.4 (SPIRIT TRACKING) SPIRlT updates theparticipation 
2 weights wi,j so as to guarantee that the reconstruction error Ilkt - xtJJ over 

time is predictably small. 

This informal definition describes what SPIRIT does. The precise criteria re- 
garding the reconstruction error will be explained later. If we assume that the 
xt are drawn according to some distribution that does not change over time 
(i.e., under stationarity assumptions), then the weight vectors wi converge to 
the principal directions. However, even if there are non-stationarities in the 
data (i.e., gradual drift), in practice we can deal with these very effectively, as 
we explain later. 

An additional complication is that we often have missing values, for several 
reasons: either failure of the system, or delayed arrival of some measurements. 
For example, the sensor network may get overloaded and fail to report some of 
the chlorine measurements in time or some sensor may temporarily black-out. 
At the very least, we want to continue processing the rest of the measurements. 

Tracking the hidden variables 
The first step is, for a given k, to incrementally update the k participation 

weight vectors wi, 1 5 i 5 k, so as to summarise the original streams with 
only a few numbers (the hidden variables). In Section 5.0, we describe the 
complete method, which also adapts k. 
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For the moment, assume that the number of hidden variables k is given. 
Furthermore, our goal is to minimise the average reconstruction error xt - 

xt[I2. In this case, the desired weight vectors wi, 1 < i < k are the principal 
directions and it turns out that we can estimate them incrementally. 

We use an algorithm based on adaptive filtering techniques (23, 1 l), which 
have been tried and tested in practice, performing well in a variety of settings and 
applications (e.g., image compression and signal tracking for antenna arrays). 
We experimented with several alternatives (17, 5) and found this particular 
method to have the best properties for our setting: it is very efficient in terms 
of computational and memory requirements, while converging quickly, with no 
special parameters to tune. The main idea behind the algorithm is to read in the 
new values xt+l = [ X ( ~ + ~ ) , J , .  . . , from the n streams at time t + 1, 
and perform three steps: 

1 Compute the hidden variables 1 < i < k, based on the current 
weights Wi, 1 < i < k, by projecting xt+l onto these. 

2 Estimate the reconstruction error (ei below) and the energy, based on the 
yi+l,i values. 

3 Update the estimates of wi, 1 < i < k and output the actual hidden 
variables yt+l,i for time t + 1. 

To illustrate this, Figure 12.2b shows the el and yl when the new data xt+l enter 
the system. Intuitively, the goal is to adaptively update wi so that it quickly 
converges to the "truth." In particular, we want to update wi more when ei is 
large. However, the magnitude of the update should also take into account the 
past data currently "captured" by wi. For this reason, the update is inversely 
proportional to the current energy EtVi of the i-th hidden variable, which is 
Et,i := C f = l  Y:,~. Figure 12.2~ shows w l  afier the update for xt+l. 

Algorithm TRACKW 
0. Initialise the k hidden variables wi to unit vectors w l  = [ lo .  - .  0IT, w2 = 
[010 . - 0IT, etc. Initialise di (i = 1, ... k) to a small positive value. Then: 
1. As each point xt+l arrives, initialise k1 := xt+l. 

2. For 1 < i < k, we perform the following assignments and updates, in order: 

T .  
?Ji := Wi Xi (yt+1,i = projection Onto wi) 

di t Adi + y; (energy oc i-th eigenval. of xTx~) 

ei := Xi - yiwi (error, ei 1 wi) 
1 

wi t wi + - yiei (update PC estimate) 
di 

xi+1 := xi - yiwi (repeat with remainder of xt). 
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The forgetting factor X will be discussed in Section 5.0 (for now, assume X = 1). 
For each i, di = tEtli and xi is the component of xt+l in the orthogonal 
complement of the space spanned by the updated estimates wit, 1 < i' < i of 
the participation weights. The vectors wi, 1 < i < k are in order of importance 
(more precisely, in order of decreasing eigenvalue or energy). It can be shown 
that, under stationarity assumptions, these wi in these equations converge to 
the true principal directions. 

Complexity We only need to keep the k weight vectors wi (1 5 i < k), each 
n-dimensional. Thus the total cost is O(nk), both in time and of space. The 
update cost does not depend on t. This is a tremendous gain, compared to the 
usual PCA computation cost of O(tn2). 

Detecting the number of hidden variables 
In practice, we do not know the number k of hidden variables. We propose 

to estimate k on the fly, so that we maintain a high percentage fE of the energy 
Et. Energy thresholding is a common method to determine how many principal 
components are needed (1 3). Formally, the energy Et (at time t) of the sequence 
of xt is defined as 

Similarly, the energy ~t of the reconstruction 5 i  is defined as 

LEMMA 12.5 Assuming the wi, 1 5 i < k are orthonormal, we have 

Proof If the wi, 1 < i < k are orthonormal, then it follows easily that IlkT1l = 
2 -  2 I l ~ ~ , l w l + '  "+~~,kwkl l  - "+~:,~llwk11~ = Y?J+. "+Y:,~ = 

llyT112 (Pythagorean theorem and normality). The result follows by summing 
over 7. 

It can be shown that algorithm TRACKW maintains orthonormality without 
the need for any extra steps (otherwise, a simple re-orthonormalisation step at 
the end would suffice). 

From the user's perspective, we have a low-energy and a high-energy thresh- 
old, fE and FE, respectively. We keep enough hidden variables k, so the 
retained energy is within the range [fE - Et, FE . Et]. Whenever we get outside 
these bounds, we increase or decrease k. In more detail, the steps are: 
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1 Estimate the full energy Et+1, incrementally, from the sum of squares of 
&,i. 

2 Estimate the energy E ( ~ )  of the k hidden variables. 

3 Possibly, adjust k. We introduce a new hidden variable (update lc t k+ 1) 
if the current hidden variables maintain too l i e  energy, i.e., E ( ~ )  < fE E. 
We drop a hidden variable (update k t k - I), if the maintained energy 
is too high, i.e., E ( ~ )  > FEE. 

The energy thresholds fE and FE are chosen according to recommendations 
in the literature (13, 7). We use a lower energy threshold fE = 0.95 and an 
upper threshold FE = 0.98. Thus, the reconstruction kt retains between 95% 
and 98% of the energy of xt. 

Algorithm SPIRIT 
0. Initialise k t 1 and the total energy estimates of xt and k t  per time tick to 
E +  and El O. Then, 
1. As each new point arrives, update wi, for 1 < i < k (step 1, TRACKW). 
2. Update the estimates (for 1 < i 5 k) 

3. Let the estimate of retained energy be 

If E(*) < fEE, then we start estimating wk+l (initialising as in step 0 of 
TRACKW), initialise E ~ + ~  6 0 and increase k + k + 1. If E ( ~ )  > FEE, 
then we discard wk and ~k and decrease k t k - 1. 

The following lemma proves that the above algorithm guarantees the relative 
reconstruction error is within the specified interval [ fE, FE] . 
LEMMA 12.6 The relative squared error of the reconstruction satisfies 

Proof From the orthogonality of x, and 2, - x, we have 112, - x71I2 = 
llx,112 - llk,112 = / I x , / / ~  - lly7112 (by Lemma 12.5). The result follows by 
summing over T and from the definitions of E and E. 

In Section 8.0 we demonstrate that the incremental weight estimates are ex- 
tremely close to the principal directions computed with offline PCA. 
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Exponential forgetting 
We can adapt to more recent behaviour by using an exponential forgetting 

factor, 0 < X < 1. This allows us to follow trend drifts over time. We use the 
same X for the estimation of both wi and of the AR models (see Section 6.0). 
However, we also have to properly keep track of the energy, discounting it with 
the same rate, i.e., the update at each step is: 

Typical choices are 0.96 < X < 0.98 (1 1). As long as the values of xt do not 
vary wildly, the exact value of X is not crucial. We use X = 0.96 throughout. 
A value of X = 1 makes sense when we know that the sequence is stationary 
(rarely true in practice, as most sequences gradually drift). Note that the value 
of X does not affect the computation cost of our method. In this sense, an 
exponential forgetting factor is more appealing than a sliding window, as the 
latter has explicit buffering requirements. 

6. Putting SPIRIT to work 
We show how we can exploit the correlations and hidden variables discovered 

by SPIRIT to do (a) forecasting, (b) missing value estimation, (c) summarisation 
of the large number of streams into a small, manageable number of hidden 
variables, and (d) outlier detection. 

Forecasting and missing values 
The hidden variables yt give us a much more compact representation of the 

"raw" variables xt, with guarantees of high reconstruction accuracy (in terms 
of relative squared error, which is less than 1 - fE). When our streams exhibit 
correlations, as we often expect to be the case, the number k of the hidden 
variables is much smaller than the number n of streams. Therefore, we can 
apply any forecasting algorithm to the vector of hidden variables yt, instead of 
the raw data vector xt. This reduces the time and space complexity by orders 
of magnitude, because typical forecasting methods are quadratic or worse on 
the number of variables. 

In particular, we fit the forecasting model on the yt instead of xt. The model 
provides an estimate yt+l = f (yt) and we can use this to get an estimate for 

using the weight estimates wi [t] from the previous time tick t. We chose auto- 
regression for its intuitiveness and simplicity, but any online method can be 
used. 
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Correlations Since the principal directions are orthogonal (wi I wj,  i # j), 
the components of yt are by construction uncorrelated-the correlations have 
already been captured by the wi, 1 < i < k. We can take advantage of this 
de-correlation reduce forecasting complexity. In particular for auto-regression, 
we found that one AR model per hidden variable provides results comparable 
to multivariate AR. 

Auto-regression Space complexity for multivariate AR (e.g., MUSCLES (24)) 
is O(n3t2), where t is the auto-regression window length. For AR per stream 
(ignoring correlations), it is O(nt2). However, for SPIRIT, we need O(kn) 
space for the wi and, with one AR model per yi, the total space complexity is 
O(kn + kt2). As published, MUSCLES requires space that grows cubically 
with respect to the number of streams n. We believe it can be made to work with 
quadratic space, but this is still prohibitive. Both AR per stream and SPIRIT 
require space that grows linearly with respect to n, but in SPIRIT k is typically 
very small (k << n) and, in practice, SPIRIT requires less memory and time 
per update than AR per stream. More importantly, a single, independent AR 
model per stream cannot capture any correlations, whereas SPIRIT indirectly 
exploits the correlations present within a time tick. 

Missing values When we have a forecasting model, we can use the forecast 
based on xt-1 to estimate missing values in xt. We then use these estimated 
missing values to update the weight estimates, as well as the forecasting models. 
Forecast-based estimation of missing values is the most time-efficient choice 
and gives very good results. 

Interpretation 
At any given time t, SPIRIT readily provides two key pieces of information 

(aside from the forecasts, etc.): @The number of hidden variables k. (ii) 
The weights wi,j, 1 < i < k, 1 < j 5 n. Intuitively, the magnitude I w ~ , ~ ~  
of each weight tells us how much the i-th hidden variable contributes to the 
reconstruction of the j-th stream. 

In the chlorine example during phase 1 (see Figure 12. I), the dataset has only 
one hidden variable, because one sinusoidal-like pattern can reconstruct both 
streams (albeit with different weights for each). Thus, SPIRIT correctly iden- 
tifies correlated streams. When the correlation was broken, SPIRIT introduces 
enough hidden variables to capture that. Finally, it also spots that, in phase 3, 
normal operation is reestablished and thus disposes of the unnecessary hidden 
variable. Section 7 has additional examples of how we can intuitively interpret 
this information. 
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Table 12.2. Description of datasets. 

Dataset n lc Description 

Chlorine 166 2 Chlorine concentrations from EPANET. 
C r i t t e r  8 1-2 Temperature sensor measurements. 
River 3 1 ~ i v e i  gauge data from USACE. 
Motes 54 2-4 Light sensor measurements. 

7. Experimental case studies 
In this section we present case studies on real and realistic datasets to demon- 

strate the effectiveness of our approach in discovering the underlying correla- 
tions among streams. In particular, we show that: (i) We capture the appropriate 
number of hidden variables. As the streams evolve, we capture these changes 
in real-time (21) and adapt the number of hidden variables k and the weights 
wi. (ii) We capture the essential behaviour with very few hidden variables 
and small reconstruction error. (iii) We successfully deal with missing values. 
(iv) We can use the discovered correlations to perform good forecasting, with 
much fewer resources. (v) We can easily spot outliers. (vi) Processing time per 
stream is constant. Section 8 elaborates on performance and accuracy. 

Chlorine concentrations 
Description The Chlorine dataset was generated by EPANET 2.0' that ac- 
curately simulates the hydraulic and chemical phenomena within drinking water 
distribution systems. Given a network as the input, EPANET tracks the flow of 
water in each pipe, the pressure at each node, the height of water in each tank, 
and the concentration of a chemical species throughout the network, during a 
simulation period comprised of multiple timestamps. We monitor the chlorine 
concentration level at all the 166 junctions of a water distribution network, for 
4310 timestamps during 15 days (one time tick every five minutes). The data 
was generated by using the input network with the demand patterns, pressures, 
flows specified at each node. 

Data characteristics The two key features are: (i) A clear global periodic 
pattern (daily cycle, dominating residential demand pattern). Chlorine concen- 
trations reflect this, with few exceptions. (ii) A slight time shift across different 
junctions, which is due to the time it takes for fresh water to flow down the 
pipes from the reservoirs. Thus, most streams exhibit the same sinusoidal- 

'http: //WWW. epa. gov/ORD/NRMRL/wswrd/epanet . html 
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(a) Measurements and SPIRIT reconstruction (b) Hidden variables 

Figure 12.3. Chlorine dataset: (a) actual measurements and reconstruction at four junctions. 
We plot only 500 consecutive timestamps (the patterns repeat after that). (b) shows SPIRIT'S 
hidden variables. 

like pattern, except with gradual phase shifts as we go fkrther away from the 
reservoir. 

Results of SPIRIT SPIRIT can successfully summarise the data using just 
two numbers (hidden variables) per time tick, as opposed to the original 166 
numbers. Figure 12.3a shows the reconstruction for four of the sensors (out of 
166). Only two hidden variables give very good reconstruction. 

Interpretation The two hidden variables (Figure 12.3b) reflect the two key 
dataset characteristics. The first hidden variable captures the global, periodic 
pattern. The second one also follows a very similar periodic pattern, but with 
a slight "phase shift." It turns out that the two hidden variables together are 
sufficient to express (via a linear combination) any other time series with an 
arbitrary "phase shift." 

Light measurements 
Description The Motes dataset consists of light intensity measurements col- 
lected using Berkeley Mote sensors, at several different locations in a lab, over 
a period of a month. 

Data characteristics The main characteristics are: (i) A clear global periodic 
pattern (daily cycle). (ii) Occasional big spikes fkom some sensors (outliers). 

Results of SPIRIT SPIRIT detects four hidden variables (see Figure 12.4b). 
Two of these are intermittent and correspond to outliers, or changes in the cor- 
related trends. We show the reconstructions for some of the observed variables 
in Figure 12.4a. 

Interpretation In summary, the first two hidden variables (see Figure 12.4b) 
correspond to the global trend and the last two, which are intermittently present, 
correspond to outliers. In particular, the first hidden variable captures the global 
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(a) Original measurements vs. reconstruction (b) Hidden variables 

Filplrre 12.4. Mote dataset: (a) shows the measurements (bold) and reconstruction (thin) on 
nodes 3 1 and 32. (b) the third and fourth hidden variables are intermittent and indicate anomalous 
behaviour (axes limits are different in each plot). 

periodic pattern. The interpretation of the second one is again similar to the 
Chlorine dataset. The first two hidden variables together are sufficient to 
express arbitrary phase shifts. The third and fourth hidden variables indicate 
some of the potential outliers in the data. For example, there is a big spike in 
the 4th hidden variable at time t = 1033, as shown in Figure 12.4b. Examining 
the participation weights w4 at that timestamp, we can find the corresponding 
sensors "responsible" for this anomaly, i.e., those sensors whose participation 
weights have very high magnitude. Among these, the most prominent are 
sensors 31 and 32. Looking at the actual measurements from these sensors, we 
see that before time t = 1033 they are almost 0. Then, very large increases 
occur around t = 1033, which bring an additional hidden variable into the 
system. 

Room temperatures 
Description The C r i t t e r  dataset consists of 8 streams (see Figure 12.5a). 
Each stream comes from a small senso3 (aka. Critter) that connects to the 
joystick port and measures temperature. The sensors were placed in 5 neigh- 
bouring rooms. Each time tick represents the average temperature during one 
minute. 

Furthermore, to demonstrate how the correlations capture information about 
missing values, we repeated the experiment after blanking 1.5% of the values 
(five blocks of consecutive timestamps; see Figure 12.6). 

Data characteristics Overall, the dataset does not seem to exhibit a clear 
trend. Upon closer examination, all sensors fluctuate slightly around a con- 
stant temperature (which ranges from 22-27*C, or 72-81°F, depending on the 

2http: //www. ices. cmu. edu/sensornets/ 
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Figure 12.5. Critter data and SPIRIT output, for each of the temperature sensors, in (a). 
SPIRIT can track the overall behaviour of the entire stream collection with only two hidden 
variables, shown in (c). For the comparison in (b), wall clock times are 1.5 minutes (repeated 
PCA) versus 7 seconds (SPIRIT). 

sensor). Approximately half of the sensors exhibit a more similar "fluctuation 
pattern." 

Results of SPIRIT SPIRIT discovers one hidden variable, which is sufficient 
to capture the general behaviour. However, if we utilise prior knowledge (such 
as, e.g., that the pre-set temperature was 23OC), we can ask SPIRIT to detect 
trends with respect to that. In that case, SPIRIT comes up with two hidden 
variables, which we explain later. 

SPIRIT is also able to deal successfully with missing values in the streams. 
Figure 12.6 shows the results on the blanked version (1.5% of the total values in 
five blocks of consecutive timestamps, starting at a different position for each 
stream) of Critter. The correlations captured by SPIRIT'S hidden variable 
often provide useful information about the missing values. In particular, on 
sensor 8 (second row, Figure 12.6), the correlations picked by the single hidden 
variable successfully capture the missing values in that region (consisting of 
270 ticks). On sensor 7, (first row, Figure 12.6; 300 blanked values), the upward 
trend in the blanked region is also picked up by the correlations. Even though 
the trend is slightly mis-estimated, as soon as the values are observed again, 
SPIRIT very quickly gets back to near-perfect tracking. 
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Figure 12.6. Detail of the forecasts on Critter with blanked values. The second row shows 
that the correlations picked by the single hidden variable successfully capture the missing values 
in that region (consisting of 270 consecutive ticks). In the first row (300 consecutive blanked 
values), the upward trend in the blanked region is also picked up by the correlations to other 
streams. Even though the trend is slightly mis-estimated, as soon as the values are observed 
again SPIRIT quickly gets back to near-perfect tracking. 

Interpretation If we examine the participation weights in wl ,  the largest 
correspond primarily to streams 5 and 6, and then to stream 8. If we examine 
the data, sensors 5 and 6 consistently have the highest temperatures. Sensor 8 
also has a similar temperature most of the time. 

However, if the sensors are calibrated based on the fact that these are building 
temperature measurements, where we have set the thermostat to 23OC (73OF), 
then SPIRIT discovers two hidden variables (see Figure 12%). More specif- 
ically, if we reasonably assume that we have the prior knowledge of what the 
temperature should be (note that this has nothing to do with the average tem- 
perature in the observed data) and want to discover what happens around that 
temperature, we can subtract it from each observation and SPIRIT will discover 
patterns and anomalies based on this information. Actually, this is what a hu- 
man operator would be interested in discovering: "Does the system work as I 
expect it to?" (based on my knowledge of how it should behave) and "If not, 
what is wrong?" and we indeed discover this kind of information. 

The interpretation of the first hidden variable is similar to that of the original 
signal: sensors 5 and 6 (and, to a lesser extent, 8) deviate from that temperature 
the most, for most of the time. Maybe the thermostats are broken or set wrong? 

For wg, the largest weights correspond to sensors 1 and 3, then to 2 and 4. If 
we examine the data, we notice that these streams follow a similar, fluctuating 
trend (close to the pre-set temperature), the first two varying more violently. 
The second hidden variable is added at time t = 2016. If we examine the plots, 
we see that, at the beginning, most streams exhibit a slow dip and then ascent 
(e.g., see 2, 4 and 5 and, to a lesser extent, 3, 7 and 8). However, a number 
of them start fluctuating more quickly and violently when the second hidden 
variable is added. 
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River - Hidden variable 

(a) SPIRIT reconstruction (with forecasting) (b) Hidden variable 

Figure 12.7. Actual River data (river gauges, in feet) and SPIRIT output, for each of the 
streams (no pun intended). The large portions with missing values across all streams are marked 
with dotted lines (there are also other missing values in some of the streams); about 26% of all 
values are missing, but this does not affect SPIRIT's tracking abilities. 

River gauges 
Description The dataset was collected from the USACE current river con- 
ditions website3. It consists of river stage (or, water level) data from three 
different measuring stations in the same river system (see Figure 12.7). 

Data characteristics The data exhibit one common trend and has plenty of 
missing values (26% of all values, for all three streams). 

Results and interpretation Examining the three hidden variable weights 
found by SPIRIT, these have ratios 1.5 : 1.1 : 1. Indeed, if we look at all 
20,000 time ticks, this is what we see; all streams are very similar (since they 
are from the same river), with the "amplitude" of the fluctuations having roughly 
these proportions. Hence, one hidden variable is sufficient, the three weights 
compactly describe the key information and the interpretation is intuitive. 

Besides recovering missing values from underlying correlations captured by 
the few hidden variables, SPIRIT's tracking abilities are not affected even in 
extreme cases. 

8. Performance and accuracy 
In this section we discuss performance issues. First, we show that SPIRIT 

requires very limited space and time. Next, we elaborate on the accuracy of 
SPIRIT's incremental estimates. 

3http: //wmw. 1rp.usace. army .mil/current/ 
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(a) Stream size t (b) Streams n (c) Hidden variables k 

Figure 12.8. Wall-clock times (including time to update forecasting models). Times for AR 
and MUSCLES are not shown, since they are off the charts fiom the start (13.2 seconds in (a) 
and 209 in (b)). The starting values are: (a) 1000 time ticks, (b) 50 streams, and (c) 2 hidden 
variables (the other two held constant for each graph). It is clear that SPIRIT scales linearly. 

Time and space requirements 
Figure 12.8 shows that SPIRIT scales linearly with respect to number of 

streams n and number of hidden variables k. AR per stream and MUSCLES 
are essentially off the charts fiom the very beginning. Furthermore, SPIRIT 
scales linearly with stream size (i.e., requires constant processing time per 
tuple). 

The plots were generated using a synthetic dataset that allows us to First, 
we choose the number k of trends and generate sine waves with different fie- 
quencies, say yt,i = s in(2r i /k t ) ,  1 < i < k .  Thus, all trends are painvise 
linearly independent. Next, wenerate each of the n streams as random linear 
combinations of these k trend signals. This scheme allows us to vary k, n and 
the length of the streams at will. For each experiment shown, one of these pa- 
rameters is varied and the other two are held fixed. The numbers in Figure 12.8 
are wall-clock times of our Matlab implementation. Both AR-per-stream as 
well as MUSCLES (also in Matlab) are several orders of magnitude slower and 
thus omitted. 

We have also implemented the SPIRIT algorithms in a real system (2 I), which 
can obtain measurements fiom sensor devices and display hidden variables and 
trends in real-time. 

Accuracy 
In terms of accuracy, everything boils down to the quality of the summary 

provided by the hidden variables. To this end, we show the reconstruction 
5it of xt, fiom the hidden variables yt in Figure 12.50>). One line uses the 
true principal directions, the other the SPIRIT estimates (i.e., weight vectors). 
SPIRIT comes very close to repeated PCA. 

We should note that this is an unfair comparison for SPIRIT, since repeated 
PCA requires (i) storing all stream values, and (ii) performing a very expensive 
SVD computation for each time tick. However, the tracking is still very good. 
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Table 12.3. Reconstruction accuracy (mean squared error rate). 

Dataset Chlorine C r i t t e r  Motes 

MSE rate (SPIRIT) 
MSE rate (repeated PCA) 

(a) X = 1 (b) X = 0.96 

Figure 12.9. Hidden variable tracking accuracy. 

This is always the case, provided the corresponding eigenvalue is large enough 
and fairly well-separated from the others. If the eigenvalue is small, then the 
corresponding hidden variable is ofno importance and we do not track it anyway. 

Reconstruction error Figure 12.3 shows the reconstruction error, C Ilkt - 
xt 11 2 /  C 1 lxt 1 1  2, achieved by SPIRIT. In every experiment, we set the energy 
thresholds to [fE, FE] = [0.95,0.98]. Also, as pointed out before, we set 
X = 0.96 as a reasonable default value to deal with non-stationarities that 
may be present in the data, according to recommendations in the literature (1 1). 
Since we want a metric of overall quality, the MSE rate weighs each observation 
equally and does not take into account the forgetting factor A. 

Still, the MSE rate is very close to the bounds we set. In Figure 12.3 we 
also show the MSE rate achieved by repeated PCA. As pointed out before, this 
is already an unfair comparison. In this case, we set the number of principal 
components k to the maximum that SPIRIT uses at any point in time. This 
choice favours repeated PCA even further. Despite this, the reconstruction 
errors of SPIRIT are close to the ideal, while using orders of magnitude less 
time and space. 

Finally, Figure 12.9 illustrates the convergence to the ''true" principal com- 
ponent directions on a synthetic dataset. First, we compare against the PCA of 
the entire data X, with X = 1. We see convergence is almost immediate. This 
is always the case, provided the corresponding eigenvalue is large enough and 
fairly well-separated from the others. However, if the eigenvalue is small, then 
the corresponding hidden variable is of no importance and we do not track it 
anyway. When X < 1, the problem is harder, because the wi gradually shift 
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over time. For X < 1, we compare against repeated PCA (using the first t 
rows of X, appropriately weighted). We see that we can still track the shifting 
principal component directions well. 

9. Conclusion 
We focus on finding patterns, correlations and hidden variables, in a large 

number of streams. SPIRIT has the following desirable characteristics: 
(i) It discovers underlying correlations among multiple streams, incremen- 

tally and in real-time (21) and provides a very compact representation of the 
stream collection, via a few hidden variables. 

(ii) It automatically estimates the number Ic of hidden variables to track, and 
it can automatically adapt, if Ic changes (e.g., an air-conditioner switching on, 
in a temperature sensor scenario). 

(iii) It scales up extremely well, both on database size (i.e., number of time 
ticks t), and on the number n of streams. Therefore it is suitable for a large 
number of sensors / data sources. 

(iv) Its computation demands are low: it only needs O(nlc) floating point 
operations-no matrix inversions nor SVD (both infeasible in online, any-time 
settings). Its space demands are similarly limited. 

(v) It can naturally hook up with any forecasting method, and thus easily do 
prediction, as well as handle missing values. 

We showed that the output of SPIRIT has a natural interpretation. We eval- 
uated our method on several datasets, where indeed it discovered the hidden 
variables. Moreover, SPIRIT-based forecasting was several times faster than 
other methods. 
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Abstract With advances in data collection and generation technologies, organizations and 
researchers are faced with the ever growing problem of how to manage and 
analyze large dynamic datasets. Environments that produce streaming sources of 
data are becoming common place. Examples include stock market, sensor, web 
click stream, and network data. In many instances, these environments are also 
equipped with multiple distributed computing nodes that are often located near 
the data sources. Analyzing and monitoring data in such environments requires 
data mining technology that is cognizant of the mining task, the distributed nature 
of the data, and the data influx rate. In this chapter, we survey the current state 
of the field and identify potential directions of future research. 

1. Introduction 
Advances in technology have enabled us to collect vast amounts of data from 

various sources, whether they be from experimental observations, simulations, 
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sensors, credit card transactions, or from networked systems. To benefit from 
these enhanced data collecting capabilities, it is clear that semi-automated in- 
teractive techniques such as data mining should be employed to process and 
analyze the data. It is also desirable to have interactive response times to client 
queries, as the process is often iterative in nature (with a human in the loop). 
The challenges to meet these criteria are often daunting as detailed next. 

Although inexpensive storage space makes it possible to maintain vast vol- 
umes of data, accessing and managing the data becomes a performance issue. 
Often one finds that a single node is incapable of housing such large datasets. 
Efficient and adaptive techniques for data access, data storage and communi- 
cation (if the data sources are distributed) are thus necessary. Moreover, data 
mining becomes more complicated in the context of dynamic databases, where 
there is a constant influx of data. Changes in the data can invalidate existing 
patterns or introduce new ones. Re-executing the algorithms from scratch leads 
to large computational and I/O overheads. These two factors have led to the 
development of distributed algorithms for analyzing streaming data which is 
the focus of this survey article. 

Many systems use a centralized model for mining multiple data streams [2]. 
Under this model the distributed data streams are directed to one central location 
before they are mined. A schematic diagram of a centralized data stream mining 
system is presented in Figure 13.1. Such a model of computation is limited in 
several respects. First, centralized mining of data streams can result in long 
response time. While distributed computing resources may be available, they 
are not fully utilized. Second, central collection of data can result in heavy 
traffic over critical communication links. If these communication links have 
limited network bandwidth, network I/O may become a performance bottleneck. 
Furthermore, in power constrained domains such as sensor networks, this can 
result in excessive power consumption due to excessive data communication. 

To alleviate the aforementioned problems, several researchers have proposed 
a model that is aware of the distributed sources of data, computational resources, 
and communication links. A schematic diagram of such a distributed stream 
mining system is presented in Figure 13.1 and can be contrasted with the cen- 
tralized model. In the model of distributed stream mining, instead of offloading 
the data to one central location, the distributed computing nodes perform parts 
of the computation close to the data, while communicating the local models 
to a central site as and when needed. Such an architecture provides several 
benefits. First, by using distributed computing nodes, it allows the derivation 
of a greater degree of parallelism, thus reducing response time. Second, as 
only local models need to be communicated, communication can potentially 
be reduced, improving scalability, and reducing power consumption in power 
constrained domains. 
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Figure 13.1. Centralized Stream Processing Architecture (left) Distributed Stream Processing 
Architecture (right) 

This chapter presents a brief overview of distributed stream mining algo- 
rithms, systems support, and applications, together with emerging research di- 
rections. We attempt to characterize and classify these approaches as to whether 
they belong in the centralized model or the distributed model. The rest of this 
chapter is organized as follows. First, we present distributed stream mining 
algorithms for various mining tasks such as outlier detection, clustering, fre- 
quent itemset mining, classification, and summarization. Second, we present an 
overview of distributed stream mining in resource constrained domains. Third, 
we summarize research efforts on building systems support for facilitating dis- 
tributed stream mining. Finally, we conclude with emerging research directions 
in distributed stream mining. 

2. Outlier and Anomaly Detection 

The goal in outlier or anomaly detection is to find data points that are most 
different from the remaining points in the data set [4]. Most outlier detection 
algorithms are schemes in which the distance between every pair of points 
is calculated, and the points most distant from all other points are marked as 
outliers [29]. This is an O(n2) algorithm that assumes a static data set. Such 
approaches are difficult to extend to distributed streaming data sets. Points in 
these data sets arrive at multiple distributed end-points, which may or may not 
be compute nodes, and must be processed incrementally. Such constraints lead 
us away from purely distance-based approaches, and towards more heuristic 
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techniques. Note that the central issue in many anomaly detection systems, is 
to identify anomalies in real-time or as close to real time as possible thus making 
it a natural candidate for many streaming applications. Moreover, often times 
the data is produced at disparate sites making distributed stream mining a natural 
fit for this domain. In this section we review the work in outlier or anomaly 
detection most germane to distributed stream mining. 

Various application-specific approaches to outlier/anomaly detection have 
been proposed in the literature. An approach [39] has been presented for dis- 
tributed deviation detection in sensor networks. This approach is tailored to 
the sensor network domain and targets misbehaving sensors. The approach 
maintains density estimates of values seen by a sensor, and flags a sensor to 
be a misbehaving sensor if its value deviates significantly from the previously 
observed values. This computation is handled close to the sensors in a dis- 
tributed fashion, with only results being reported to the central server as and 
when needed. 

One of the most popular applications of distributed outlier detection is that 
of network intrusion detection. Recent trends have demanded a distributed 
approach to intrusion detection on the Internet. The first of these trends is a 
move towards distributed intrusions and attacks, that is to say, intrusions and 
attacks originating from a diverse set of hosts on the internet. Another trend 
is the increasing heterogeneous nature of the Internet, where different hosts, 
perhaps residing in the same subnetwork have differing security requirements. 
For example, there have been proposals for distributed firewalls [20] for fulfill- 
ing diverse security requirements. Also, the appearance of mobile and wireless 
computing has created dynamic network topologies that are difficult, if not 
impossible, to protect from a centralized location. Efficient detection and pre- 
vention of these attacks requires distributed nodes to collaborate. By itself, a 
node can only collect information about the state of the network immediately 
surrounding it, which may be insufficient to detect distributed attacks. If the 
nodes collaborate by sharing network audit data, host watch lists, and models of 
known network attacks, each can construct a better global model of the network. 

Otey et a1 [36], present a distributed outlier detection algorithm targeted at 
distributed online streams, specifically to process network data collected at dis- 
tributed sites. Their approach finds outliers based on the number of attribute 
dependencies violated by a data point in continuous, categorical, and mixed 
attribute spaces. They maintain an in-memory structure that succinctly sum- 
marizes the required dependency information. In order to find exact outliers 
in a distributed streaming setting, the in-memory summaries would need to be 
exchanged frequently. These summaries can be large, and consequently, in a 
distributed setting, each distributed computing node only exchanges local out- 
liers with the other computing nodes. A point is deemed to be a global outlier 
if every distributed node believes it to be an outlier based on its local model 
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of normalcy. While such an approach will only find approximate outliers, the 
authors show that this heuristic works well in practice. While the authors report 
that to find exact outliers they need to exchange a large summary which leads 
to excessive communication, it could be possible to exchange only decisive 
parts of the summary, instead of the entire summary, in order to more accu- 
rately detect the true outliers. Furthermore, their in-memory summaries are 
large, as they summarize a large amount of dependency information. Reducing 
this memory requirement could potentially allow the use of this algorithm in 
resource-constrained domains. 

EMERALD is an approach for collaborative intrusion detection for large net- 
works within an enterprise [42]. This approach allows for distributed protection 
of the network through a hierarchy of surveillance systems that analyze network 
data at the service, domain, and enterprise-wide levels. However, EMERALD 
does not provide mechanisms for allowing different organizations to collabo- 
rate. Locasto et a1 [33] examine techniques that allow different organizations 
to do such collaboration for enhanced network intrusion detection. If organi- 
zations can collaborate, then each can build a better model of global network 
activity, and more precise models of attacks (since they have more data from 
which to estimate the model parameters). This allows for better characterization 
and prediction of attacks. Collaboration is achieved through the exchange of 
Bloom filters, each of which encodes a list of IP addresses of suspicious hosts 
that a particular organization's Intrusion Detection System (IDS) has detected, 
as well as the ports which these suspicious hosts have accessed. The use of 
Bloom filters helps both to keep each collaborating organization's information 
confidential and to reduce the amount of data that must be exchanged. 

A major limitation of this approach is that information exchanged may not 
be sufficient to identify distributed attacks. For example, it is possible that 
an attack may originate from a number of hosts, none of which are suspicious 
enough to be included on any organization's watch list. However, the combined 
audit data collected by each organization's IDS may be sufficient to detect that 
attack. To implement such a system, two problems must be addressed. The 
fist is that each organization may collect disjoint sets of features. Collaborating 
organizations must agree beforehand on a set of common features to use. Some 
ideas for common standards for intrusion detection have been realized with the 
Common Intrusion Detection Framework (CIDF) [31]. The second problem is 
that of the privacy of each organization's data. It may not be practical to use 
Bloom filters to encode a large set of features. However, techniques do exist 
for privacy-preserving data mining [28,23,32] that will allow organizations to 
collaborate without compromising the privacy of their data. 

There have been other approaches for detecting distributed denial-of-service 
attacks. Lee et a1 have proposed a technique for detecting novel and distributed 
intrusions based on the aforementioned CIDF [31]. The approach not only 
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allows nodes to share information with which they can detect distributed attacks, 
but also allows them to distribute models of novel attacks. Yu et a1 propose a 
middleware-based approach to prevent distributed denial of service attacks [45]. 
Their approach makes use of Virtual Private Operation Environments (VPOE) 
to allow devices running the middleware to collaborate. These devices can act 
as firewalls or network monitors, and their roles can change as is necessary. 
Each device contains several modules, including an attack detection module, 
a signaling module for cooperating with other devices, and policy processing 
modules. 

Some work in network intrusion detection has been done in the domain of 
mobile ad hoc networks (MANETs) [47, 181, where nodes communicate over 
a wireless medium. In MANETs, the topology is dynamic, and nodes must 
cooperate in order to route messages to their proper destinations. Because of 
the open communication medium, dynamic topology, and cooperative nature, 
MANETs are especially prone to network intrusions, and present difficulties 
for distributed intrusion detection. 

To protect against intrusions, Zhang at a1 have proposed several intrusion 
detection techniques [46,47]. In their proposed architecture, each node in the 
network participates in detection and response, and each is equipped with a 
local detection engine and a cooperative detection engine. The local detection 
engine is responsible for detecting intrusions from the local audit data. If a node 
has strong evidence that an intrusion is taking place, it can initiate a response to 
the intrusion. However, if the evidence is not sufficiently strong, it can initiate a 
global intrusion detection procedure through the cooperative detection engine. 
The nodes only cooperate by sharing their detection states, not their audit data, 
and so it is difficult for each node to build an accurate global model of the 
network with which to detect intrusions. In this case, intrusions detectable only 
at the global level (e.g. ip sweeps) will be missed. However, the authors do point 
out that they only use local data since the remote nodes may be compromised 
and their data may not be trustworthy. 

In another paper [IS], Huang and Lee present an alternative approach to 
intrusion detection in MANETs. In this work, the intrusions to be detected are 
attacks against the structure of the network itself. Such intrusions are those 
that corrupt routing tables and protocols, intercept packets, or launch network- 
level denial-of-service attacks. Since MANETs typically operate on battery 
power, it may not be cost effective for each node to constantly run its own 
intrusion detection system, especially when there is a low threat level. The 
authors propose that a more effective approach would be for a cluster of nodes 
in a MANET to elect one node as a monitor (the clusterhead) for the entire 
cluster. Using the assumption that each node can overhear network traffic in 
its transmission range, and that the other cluster members can provide (some 
of) the features (since the transmission ranges of the clusterhead and the other 
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cluster members may not overlap, the other cluster members may have statistics 
on portions of the cluster not accessible to the clusterhead), the clusterhead is 
responsible for analyzing the flow of packets in its cluster in order to detect 
intrusions and initiate a response. In order for this intrusion detection approach 
to be effective, the election of the clusterhead must be fair, and each clusterhead 
must serve an equal amount of time. The first requirement ensures that the 
election of the clusterhead is unbiased (i.e. a compromised node cannot tilt the 
election in its favor), and the second requirement ensures that a compromised 
node cannot force out the current clusterhead nor remain as clusterhead for an 
unlimited period of time. There is a good division of labor, as the clusterhead 
is the only member of the cluster that must run the intrusion detection system; 
the other nodes need only collect data and send it to the clusterhead. However, 
a limitation of this approach is that not all intrusions are visible at the global 
level, especially given the feature set the detection system uses (statistics on the 
network topology, routes, and traffic). Such local intrusions include exploits of 
services running on a node, which may only be discernible using the content of 
the traffic. 

3. Clustering 
The goal in clustering is to partition a set of points into groups such that 

points within a group are similar in some sense and points in different groups 
are dissimilar in the same sense. In the context of distributed streams, one would 
want to process the data streams in a distributed fashion, while communicating 
the summaries, and to arrive at global clustering of the data points. Guha 
et a2 [17], present an approach for clustering data streams. Their approach 
produces a clustering of the points seen using small amounts of memory and 
time. The summarized data consists of the cluster centers together with the 
number of points assigned to that cluster. The k-median algorithm is used as 
the underlying clustering mechanism. The resulting clustering is a constant 
factor approximation of the true clustering. As has been shown in [16], this 
algorithm can be easily extended to operate in a distributed setting. Essentially, 
clusterings from each distributed site can be combined and clustered to find the 
global clustering with the same approximation factor. From a qualitative stand 
point, in many situations, k-median clusters are known to be less desirable than 
those formed by other clustering techniques. It would be interesting to see 
if other clustering algorithms that produce more desirable clusterings can be 
extended with the above methodology to operate over distributed streams. 

Januzaj et a1 [21], present a distributed version of the density-based cluster- 
ing algorithm, DBSCAN. Essentially, each site builds a local density-based 
clustering, and then communicates a summary of the clustering to a central 
site. The central site performs a density-based clustering on the summaries 
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obtained from all sites to find a global clustering. This clustering is relayed 
back to the distributed sites that update their local clusterings based on the dis- 
covered global clustering. While this approach is not capable of processing 
dynamic data, in [I 31, the authors have shown that density based clustering can 
be performed incrementally. Therefore, a distributed and incremental version 
of DBSCAN can potentially be devised. However, like the distributed version 
presented by Januzaj et al, we cannot provide a guarantee on the quality of the 
result. 

Beringer and Hullermeir consider the problem of clustering parallel data 
streams 151. Their goal is to find correlated streams as they arrive synchronously. 
The authors represent the data streams using exponentially weighted sliding 
windows. The discrete Fourier transform is computed incrementally, and k- 
Means clustering is performed in this transformed space at regular intervals 
of time. Data streams belonging to the same cluster are considered to be cor- 
related. While the processing is centralized, the approach can be tailored to 
correlate distributed data streams. Furthermore, the approach is suitable for 
online streams. It is possible that this approach can be extended to a distributed 
computing environment. The Fourier coefficients can be exchanged incremen- 
tally and aggregated locally to summarize remote information. Furthermore, 
one can potentially produce approximate results by only exchanging the signif- 
icant coefficients. 

4. Frequent itemset mining 

The goal in frequent itemset mining is to find groups of items or values that 
co-occur frequently in a transactional data set. For instance, in the context 
of market data analysis, a frequent two itemset could be {beer, chips), which 
means that people frequently buy beer and chips together. The goal in frequent 
itemset mining is to find all itemsets in a data set that occur at least x number 
of times, where x is the minimum support parameter provided by the user. 

Frequent itemset mining is both CPU and 110 intensive, making it very costly 
to completely re-mine a dynamic data set any time one or more transactions are 
added or deleted. To address the problem of mining frequent itemsets from dy- 
namic data sets, several researchers have proposed incremental techniques [lo, 
1 1,14,30,43,44]. Incremental algorithms essentially re-use previously mined 
information and try to combine this information with the fresh data to efficiently 
compute the new set of frequent itemsets. However, it can be the case that the 
database may be distributed over multiple sites, and is being updated at different 
rates at each site, which requires the use of distributed asynchronous frequent 
itemset mining techniques. 

Otey et a1 [38], present a distributed incremental algorithm for frequent 
itemset mining. The approach is capable of incrementally finding maximal 
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frequent itemsets in dynamic data. Maximal frequent itemsets are those that 
do not have any frequent supersets, and the set of maximal frequent itemsets 
determines the complete set of frequent itemsets. Furthermore, it is capable of 
mining frequent itemsets in a distributed setting. Distributed sites can exchange 
their local maximal frequent itemsets to obtain a superset of the global maximal 
frequent itemsets. This superset is then exchanged between all nodes so that 
their local counts may be obtained. In the final round of communication, a 
reduction operation is performed to find the exact set of global maximal frequent 
itemsets. 

Manku and Motwani [35], present an algorithm for mining frequent itemsets 
over data streams. In order to mine all frequent itemsets in constant space, 
they employ a down counting approach. Essentially, they update the support 
counts for the discovered itemsets as the data set is processed. Furthermore, 
for all the discovered itemsets, they decrement the support count by a specific 
value. As a result, itemsets that occur rarely will have their count set to zero 
and will be eventually eliminated from list. If they reappear later, their count 
is approximated. While this approach is tailored to data streams, it is not 
distributed. The methodology proposed in [38] can potentially be applied to 
this algorithm to process distributed data streams. 

Manjhi et a1 [34], extend Manku and Motwani's approach to find frequent 
items in the union of multiple distributed streams. The central issue is how to 
best manage the degree of approximation performed as partial synopses from 
multiple nodes are combined. They characterize this process for hierarchical 
communication topologies in terms of a precision gradient followed by syn- 
opses as they are passed from leaves to the root and combined incrementally. 
They studied the problem of finding the optimal precision gradient under two 
alternative and incompatible optimization objectives: (1) minimizing load on 
the central node to which answers are delivered, and (2) minimizing worst-case 
load on any communication link. While this approach targets frequent items 
only, it would be interesting to see if it can be extended to find frequent itemsets. 

5. Classification 
Hulten and Domingos [19], present a one-pass decision tree construction 

algorithm for streaming data. They build a tree incrementally by observing 
data as it streams in and splitting a node in the tree when a sufficient number 
of samples have been seen. Their approach uses the Hoeffding inequality to 
converge to a sample size. Jin and Agrawal revisit this problem and present 
solutions that speed up split point calculation as well as reduce the desired 
sample size to achieve the same level of accuracy [22]. Both these approaches 
are not capable of processing distributed streams. 



298 DATA STREAMS: MODELS AND ALGORITHMS 

Kargupta and Park present an approach for aggregating decision trees con- 
structed at distributed sites [26]. As each decision tree can be represented as 
a numeric function, the authors propose to transmit and aggregate these trees 
by using their Fourier representations. They also show that the Fourier-based 
representation is suitable for approximating a decision tree, and thus, suitable 
for transmission in bandwidth-limited mobile environments. Coupled with a 
streaming decision tree construction algorithm, this approach should be capable 
of processing distributed data streams. 

Chen et a1 [8], present a collective approach to mine Bayesian networks from 
distributed heterogeneous web-log data streams. In their approach, they learn 
a local Bayesian network at each site using the local data. Then each site iden- 
tifies the observations that are most likely to be evidence of coupling between 
local and non-local variables and transmits a subset of these observations to a 
central site. Another Bayesian network is learned at the central site using the 
data transmitted from the local sites. The local and central Bayesian networks 
are combined to obtain a collective Bayesian network, that models the entire 
data. This technique is then suitably adapted to an online Bayesian learning 
technique, where the network parameters are updated sequentially based on new 
data from multiple streams. This approach is particularly suitable for mining 
applications with distributed sources of data streams in an environment with 
non-zero communication cost (e.g. wireless networks). 

6. Summarization 

Bulut and Singh [6], propose a novel technique to summarize a data stream 
incrementally. The summaries over the stream are computed at multiple resolu- 
tions, and together they induce a unique Wavelet-based approximation tree. The 
resolution of approximations increases as we move from the root of the approx- 
imation tree down to its leaf nodes. The tree has space complexity O(logN), 
where N denotes the current size of the stream. The amortized processing cost 
for each new data value is O(1). These bounds are currently the best known for 
the algorithms that work under a biased query model where the most recent val- 
ues are of a greater interest. They also consider the scenario in which a central 
source site summarizes a data stream at multiple resolutions. The clients are 
distributed across the network and pose queries. The summaries computed at 
the central site are cached adaptively at the clients. The access pattern, i.e. reads 
and writes, over the stream results in multiple replication schemes at different 
resolutions. Each replication scheme expands as the corresponding read rate 
increases, and contracts as the corresponding write rate increases. This adaptive 
scheme minimizes the total communication cost and the number of inter-site 
messages. While the summarization process is centralized, it can potentially 
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be used to summarize distributed streams at distributed sites by aggregating 
wavelet coefficients. 

The problem of pattern discovery in a large number of co-evolving streams 
has attracted much attention in many domains. Papadimitriou et a1 introduce 
SPIRIT (Streaming Pattern dIscoveRy in multIple Time-series) [40], a com- 
prehensive approach to discover correlations that effectively and efficiently 
summarize large collections of streams. The approach uses very less memory 
and both its memory requirements and processing time are independent of the 
stream length. It scales linearly with the number of streams and is adaptive and 
fully automatic. It dynamically detects changes (both gradual and sudden) in 
the input streams, and automatically determines the number of hidden variables. 
The correlations and hidden variables discovered have multiple uses. They pro- 
vide a succinct summary to the user, they can help to do fast forecasting and 
detect outliers, and they facilitate interpolations and handling of missing values. 
While the algorithm is centralized, it targets multiple distributed streams. The 
approach can potentially be used to summarize streams arriving at distributed 
sites. 

Babcock and Olston [3], study a useful class of queries that continuously 
report the k largest values obtained from distributed data streams ("top-k mon- 
itoring queries"), which are of particular interest because they can be used to 
reduce the overhead incurred while running other types of monitoring queries. 
They show that transmitting entire data streams is unnecessary to support these 
queries. They present an alternative approach that significantly reduces com- 
munication. In their approach, arithmetic constraints are maintained at remote 
stream sources to ensure that the most recently provided top-k answer remains 
valid to within a user-specified error tolerance. Distributed communication is 
only necessary on the occasion when constraints are violated. 

7. Mining Distributed Data Streams in Resource 
Constrained Environments 

Recently, there has been a lot of interest in environments that demand dis- 
tributed stream mining where resources are constrained. For instance, in the 
sensor network domain, due to energy consumption constraints, excessive com- 
munication is undesirable. One can potentially perform more computation and 
less communication to perform the same task with reduced energy consumption. 
Consequently, in such scenarios, data mining algorithms (specifically clustering 
and classification) with tunable computation and communication requirements 
are needed [24,39]. 

A similar set of problems have recently been looked at in the network intru- 
sion detection community. Here, researchers have proposed to offload compu- 
tation related to monitoring and intrusion detection on to the network interface 
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card (NIC) [37] with the idea of enhancing reliability and reducing the con- 
straints imposed on the host processing environment. Initial results in this 
domain convey the promise of this area but there are several limiting criteria 
in current generation NICs (e.g. programming model, lack of floating point 
operations) that may be alleviated in next generation NICs. 

Kargupta et a1 present Mobimine [27], a system for intelligent analysis of 
time-critical data using a Personal Data Assistant (PDA). The system monitors 
stock market data and signals interesting stock behavior to the user. Stocks are 
interesting if they may positively or negatively affect the stock portfolio of the 
user. Furthermore, to assist in the user's analysis, they transmit classification 
trees to the user's PDA using the Fourier spectrum-based approach presented 
earlier. As discussed previously, this Fourier spectrum-based representation is 
well suited to environments that have limited communication bandwidth. 

The Vehicle Data Stream Mining System (VEDAS) [25], is a mobile and 
distributed data stream mining/monitoring application that taps into the contin- 
uous stream of data generated by most modern vehicles. It allows continuous 
on-board monitoring of the data streams generated by the moving vehicles, 
identifying the emerging patterns, and reporting them to a remote control ten- 
ter over a low-bandwidth wireless network connection. The system offers many 
possibilities such as real-time on-board health monitoring, drunk-driving detec- 
tion, driver characterization, and security related applications for commercial 
fleet management. While there has been initial work in such constrained envi- 
ronments, we believe that there is still a lot to be done in this area. 

8. Systems Support 
A distributed stream mining system can be complex. It typically consists 

of several sub-components such as the mining algorithms, the communication 
sub-system, the resource manager, the scheduler, etc. A successful stream 
mining system must adapt to the dynamics of the data and best use the available 
set of resources and components. In this section, we will briefly summarize 
efforts that target the building of system support for resource-aware distributed 
processing of streams. 

When processing continuous data streams, data arrival can be bursty, and the 
data rate may fluctuate over time. Systems that seek to give rapid or real-time 
query responses in such an environment must be prepared to deal gracefully 
with bursts in data arrival without compromising system performance. Babcock 
et a1 [I] show that the choice of an operator scheduling strategy can have sig- 
nificant impact on the run-time system memory usage. When data streams are 
bursty, the choice of an operator scheduling strategy can result in significantly 
high run-time memory usage and poor performance. To minimize memory uti- 
lization at peak load, they present Chain scheduling, an adaptive, load-aware 
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scheduling of query operators to minimize resource consumption during times 
of peak load. This operator scheduling strategy for data stream systems is 
near-optimal in minimizing run-time memory usage for single-stream queries 
involving selections, projections, and foreign-key joins with stored relations. 
At peak load, the scheduling strategy selects an operator path (a set of consec- 
utive operators) that is capable of processing and freeing the maximum amount 
of memory per unit time. This in effect results in the scheduling of operators 
that together are both selective and have a high aggregate tuple processing rate. 

The aforementioned scheduling strategy is not targeted at the processing of 
distributed streams. Furthermore, using the Chain operator scheduling strategy 
has an adverse affect on response time and is not suitable for data mining ap- 
plications that need to provide interactive performance even under peak load. 
In order to mine data streams, we need a scheduling strategy that supports 
both response time and memory-aware scheduling of operators. Furthermore, 
when scheduling a data stream mining application with dependent operators 
in a distributed setting, the scheduling scheme should not need to communi- 
cate a significant amount of state information. Ghoting and Parthasarathy [16], 
propose an adaptive operator scheduling technique for mining distributed data 
streams with response time guarantees and bounded memory utilization. The 
user can tune the application to the desired level of interactivity, thus facilitating 
the data mining process. They achieve this through a step-wise degradation in 
response time beginning from a schedule that is optimal in terms of response 
time. This sacrifice in response time is used towards optimal memory utiliza- 
tion. After an initial scheduling decision is made, changes in system state may 
force a reconsideration of operator schedules. The authors show that a decision 
as to whether a local state change will affect the global operator schedule can 
be made locally. Consequently, each local site can proceed independently, even 
under minor state changes, and a global assignment is triggered only when it is 
actually needed. 

Plale considers the problem of efficient temporal-join processing in a dis- 
tributed setting [41]. In this work, the author's goal is to optimize the join 
processing of event streams to efficiently determine sets of events that occur 
together. The size of the join window cannot be determined apriori as this may 
lead to missed events. The author proposes to vary the size of the join win- 
dow depending on the rate of the incoming stream. The rate of the incoming 
stream gives a good indication of how many previous events on the stream can 
be dropped. Reducing the window size also helps reduce memory utilization. 
Furthermore, instead of forwarding events into the query processing engine on 
a first-come first-serve basis, the author proposes to forward the earliest event 
first to further improve performance, as this facilitates the earlier determination 
of events that are a part of the join result. 
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Chen et a1 present GATES [7], a middleware for processing distributed data 
streams. This middleware targets data stream processing in a grid setting and 
is built on top of the Open Grid Services Architecture. It provides a high level 
interface that allows one to specify a stream processing algorithm as a set of 
pipelined stages. One of the key design goals of GATES is to support self 
adaption under changing conditions. To support self adaptation, the middleware 
changes one or more of the sampling rate, the summary structure size, or the 
algorithm used, based on changing conditions of the data stream. For instance, 
if the stream rate increases, the system reduces the sampling rate accordingly 
to maintain a real-time response. If we do not adapt the sampling rate, we 
could potentially face increasing queue sizes, resulting in poor performance. 
To support self adaptation, the programmer needs to provide the middleware 
with parameters that allow it to tune the application at runtime. The middleware 
builds a simple performance model that allows it to predict how parameter 
changes help in performance adaptation in a distributed setting. 

Chi et a1 [12] present a load shedding scheme for mining multiple data 
streams, although the computation is not distributed. They assume that the task 
of reading data from the stream and building feature values is computationally 
expensive and is the bottleneck. Their strategies decide on how to expend 
limited computation for building feature values for data on multiple streams. 
They decide on whether to drop a data item on the stream based on the historic 
utility of the items produced by the stream. If they choose not to build feature 
values for a data item, they simply predict feature values based on historical 
data. They use finite memory Markov chains to make such predictions. While 
the approach presented by the authors is centralized, load shedding decisions 
can be trivially distributed. 

Conclusions and Future Research Directions 
In this chapter, we presented a summary of the current state-of-the-art in 

distributed data stream mining. Specifically, algorithms for outlier detection, 
clustering, frequent itemset mining, classification, and summarization were 
presented. Furthermore, we briefly described related applications and systems 
support for distributed stream mining. 

First, the distributed sources of data that need to be mined are likely to span 
multiple organizations. Each of these organizations may have heterogeneous 
computing resources. Furthermore, the distributed data will be accessed by 
multiple analysts, each potentially desiring the execution of a different mining 
task. The various distributed stream mining systems that have been proposed 
to date do not take the variability in the tasks and computing resources into 
account. To facilitate execution and deployment in such settings, a plug and 
play system design that is cognizant of each organization's privacy is necessary. 
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A framework in which services are built on top of each other will facilitate rapid 
application development for data mining. Furthermore, these systems will need 
to be integrated with existing data grid and knowledge grid infrastructures [9] 
and researchers will need to design middleware to support this integration. 

Second, next generation computing systems for data mining are likely to be 
built using off-the-shelf CPUs connected using a high bandwidth interconnect. 
In order to derive high performance on such systems, stream mining algorithms 
may need to be redesigned. For instance, next generation processors are likely 
to have multiple-cores on chip. As has been shown previously [15], data mining 
algorithms are adversely affected by the memory-wall problem. This problem 
will likely be exacerbated on future multi-core architectures. Therefore, stream 
mining algorithms at each local site will need to be redesigned to derive high 
performance on next generation architectures. Similarly, with innovations in 
networking technologies, designs that are cognizant of high performance inter- 
connects (like Inhiband) will need to be investigated. 

Third, as noted earlier, in many instances, environments that demand dis- 
tributed stream mining are resource constrained. This in turn requires the de- 
velopment of data mining technology that is tailored to the specific execution 
environment. Various tradeoffs, e.g. energy vs. communication, communi- 
cation vs. redundant computation etc., must be evaluated on a scenario-by- 
scenario basis. Consequently, in such scenarios, data mining algorithms with 
tunable computation and communication requirements will need to be devised. 
While initial forays in this domain have been made, a systematic evaluation of 
the various design tradeoffs even for a single application domain has not been 
done. Looking further into the future, it will be interesting to evaluate if based 
on specific solutions a more abstract set of interfaces can be developed for a 
host of application domains. 

Fourth, new applications for distributed data stream mining are on the hori- 
zon. For example, RFID (radio frequency identification) technology is expected 
to significantly improve the efficiency of business processes by allowing auto- 
matic capture and identification. RFID chips are expected to be embedded in 
a variety of devices, and the captured data will likely be ubiquitous in the near 
future. New applications for these distributed streaming data sets will arise and 
application specific data mining technology will need to be designed. 

Finally, over the past few years, several stream mining algorithms have been 
proposed in the literature. While they are capable of operating in a centralized 
setting, many are not capable of operating in a distributed setting and cannot be 
trivially extended to do so. In order to obtain exact or approximate (bounded) 
results in a distributed setting, the amount of state information that needs to be 
exchanged is usually excessive. To facilitate distributed stream mining algo- 
rithm design, instead of starting from a centralized solution, one needs to start 
with a distributed mind-set right from the beginning. Statistics or summaries 
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that can be efficiently maintained in a distributed and incremental setting should 
be designed and then specific solutions that use these statistics should be de- 
vised. Such a design strategy will facilitate distributed stream mining algorithm 
design. 
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Abstract 
The field of Distributed Data Mining (DDM) deals with the problem of an- 

alyzing data by paying careful attention to the distributed computing, storage, 
communication, and human-factor related resources. Unlike the traditional cen- 
tralized systems, DDM offers a fundamentally distributed solution to analyze 
data without necessarily demanding collection of the data to a single central site. 
This chapter presents an introduction to distributed data mining for continuous 
streams. It focuses on the situations where the data observed at different loca- 
tions change with time. The chapter provides an exposure to the literature and 
illustrates the behavior of this class of algorithms by exploring two very different 
types of techniques-one for the peer-to-peer and another for the hierarchical 
distributed environment. The chapter also briefly discusses several different ap- 
plications of these algorithms. 

1. Introduction 
A data stream is often viewed as a single source time-varying signal observed 

at a single receiver [13]. A data stream can be viewed as an unbounded sequence 
(xl , x2, . . . , x,) that is indexed on the basis of the time of its arrival at the receiver. 
Babcock et al. [4] point out some the hdamental properties of a data stream 
system such as: 

the data elements arrive continuously, 

there is no limit on the total number of points in the data stream, 

and the system has no control over the order in which the data elements 
arrive 

In some applications, the data also arrive at bursts. In other words, the source 
occasionally generates the data at a very high rate compared to the rate used for 
rest of the time. Since data arrives continuously, fast one-pass algorithms are 
imperative for real-time query processing and data mining on streams. Many 
data stream algorithms have been developed over the last decade for processing 
and mining data streams that arrive at a single location or at multiple locations 
whereby they are sent to one location for processing needs. We refer to this 
scenario as the centralized data stream mining scenario. Examples of such algo- 
rithm include query processing [24], change detection [1][14][6], classification 
[3][15] and clustering [11][2]. These algorithms, however, are not applicable 
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in settings where the data, computing, and other resources are distributed and 
cannot or should not be centralized for a variety of reasons e.g. low bandwidth, 
security, privacy issues, and load balancing [5][17][23]. In many cases the cost 
of centralizing the data can be prohibitive and the owners may have privacy 
constraints of its data. In order to meet the challenges imposed by these con- 
straints, a new area of data mining has emerged in the last ten years known as the 
Distributed Data Mining (DDM)[16]. Distributed Data Mining (DDM) deals 
with the problem of analyzing data by paying careful attention to the distributed 
computing, storage, communication, and human-factor related resources. Un- 
like the traditional centralized systems, DDM offers a fundamentally distributed 
solution to analyze data without necessarily demanding collection of the data 
to a single central site. In this chapter we will primarily consider loosely- 
coupled distributed environments where each site has a private memory; the 
sites can operate independently and communicate by message passing over 
an asynchronous network. These algorithms focus on distributed computation 
with due attention to minimizing resource usage (e.g. communication cost) and 
satisfying application-level constraints (e.g. privacy protection). We focus on 
a subset of problems of DDM-Distributed Data Stream Mining-where not 
only the data is distributed, but also the data is non-stationary and arriving in the 
form of multiple streams. These algorithms pose unique challenges themselves 
- the algorithms need to be efficient in computing the task, work with a local 
data, compute the data mining model incrementally, and possibly communicate 
with a subset of its peer-nodes to compute the result. 

This chapter offers two things: (1) provide an overview of the existing tech- 
niques for addressing some of the stream mining problems in the distributed 
scenario, and (2) discuss two very different distributed data stream mining al- 
gorithms in greater detail in order to illustrate how these algorithms work. 

The chapter is organized as follows. In Section 2 we point out the ratio- 
nale for the importance of the main topic of our discussion - Distributed Data 
Stream Mining. Section 3 discusses some of the related papers in the area. 
In Section 4 we present a local algorithm for data mining in a dynamic and 
peer-to-peer environment. Section 5 discusses a distributed Bayesian network 
learning algorithm. We conclude the chapter in Section 6. 

2. Motivation: Why Distributed Data Stream Mining? 
This section presents a few examples for illustrating the need for distributed 

data stream mining algorithms. 
Example 1: Consider a distributed sensor network scenario where there are 

a bunch of sensors deployed in a field. Each of these sensors measures different 
entities e.g. temperature, pressure, vibration etc. Each of these sensors has 
limited battery power and so developing algorithms with low communication 
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overhead is a must in such a setting. If the task is to monitor a global state of the 
system, one way would be to centralize all the data at each predetermined time 
instance and build a model. With this approach there are two major problems: 

due to low battery power of the sensors and low bandwidth, this is pro- 
hibitive in a typical sensor network setting, and 

the model represented in such a periodic update scheme can be wrong for 
a large portion of time before a new model is built (for example, this can 
happen if the data distribution changes immediately after each periodic 
update) 

Distributed algorithms can avoid these problems. 
Example 2: Another example comes from the cross domain network intru- 

sion monitoring paradigm. In network traffic monitoring or intrusion detection 
problem, the goal is to identify inappropriate, incorrect, or anomalous activi- 
ties that can potentially become a threat to the network. Existing methods of 
network traffic monitoring/intrusion detection often requires centralizing the 
sample network packets from diverse locations and analyzing them. This is 
prohibitive in many real-world situations such as in cross-domain intrusion de- 
tection schemes where different parties or companies collaborate to find the 
anomalous patterns. Hence, the system must be equipped with privacy preserv- 
ing data mining algorithms so that the patterns can be computed and shared 
across the sites without sharing the privacy-sensitive data. Also, since the data 
arrives in the form of continuous streams (e.g. TCP/IP packets), transferring the 
data to a single (trusted) location at each time instance and analyzing them is also 
not feasible. This calls for the development of distributed privacy preserving 
data mining algorithms capable of being deployed in streaming environments. 
The Department of Homeland Security (DHS) is currently funding a number of 
projects in this related area (see "http://www.agnik.com/DHSSBIR.html" for 
such a project). 

In the next section we present a survey of some of the existing distributed 
data stream mining algorithms. 

3. Existing Distributed Data Stream Mining Algorithms 
There exists a plethora of work in the area of distributed data stream mining. 

The existing literature provides an excellent starting point for our main topic 
of discussion in this chapter. Not only have the distributed data mining and 
databases community contributed to the literature, a bulk of the work also 
comes from the wireless and sensor networks community. In this section we 
discuss some of the related papers with pointers for further reading. 

Computation of complex functions over the union of multiple of streams has 
been studied widely in the stream mining literature. Gibbons et al. [lo] presents 
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the idea of doing coordinated sampling in order to compute simple functions 
such as the total number of ones in the union of two binary streams. They have 
developed a new sampling strategy to sample from the two streams and have 
shown that their sampling strategy can reduce the space requirement for such 
a computation from R(n) to log(n), where n is the size of the stream. Their 
technique can easily be extended to the scenario where there are more than two 
streams. The authors also point out that this method would work even if the 
stream is non-binary (with no change in space complexity). 

Much work has been done in the area of query processing on distributed data 
streams. Chen et al. [7] has developed a system 'NiagaraCQ' which allows 
answering continuous queries in large scale systems such as the internet. In 
such systems many of the queries are similar. So a lot of computation, com- 
munication and ID resources can be saved by properly grouping the similar 
queries. NiagaraCQ achieves the same goal. Their grouping scheme is incre- 
mental and they use an adaptive regrouping scheme in order to find the optimal 
match between a new query and the group to which the query should be placed. 
If none of these match, then a new query group is formed with this query. The 
paper does not talk about reassignment of the existing queries into the newly 
formed groups, rather leaves it as a fhture work. 

An different approach has been described in [23]. The distributed model 
described there has nodes sending streaming data to a central node which is 
responsible for answering the queries. The network links near the central node 
becomes a bottleneck as soon as the arrival rate of data the becomes too high. 
In order to avoid that, the authors propose installing filters which restrict the 
data transfer rate from the individual nodes. Node 0 installs a filter of width 
Wo and of range [Lo, Ho]. Wo is centered around the most recent value of 
the object V (Lo = V - y and Ho = V + ). NOW the node does not send 
updates if V is inside the range Lo 5 V 5 Ho; otherwise it sends updates to 
the central node and recenters the bounds Lo and Ho. This technique provides 
the answers to queries approximately and works in the circumstances where we 
do not require the exact answer to the queries. Since in many cases the user can 
provide the query precision that is necessary, the filters can be made to work 
after setting the bounds based on this user input. 

The sensor network community provides a rich literature on the streaming 
algorithms. Since the sensors are deployed in hostile terrains, one of the most 
fundamental task aims at developing a general Eramework for monitoring the 
network themselves. A similar idea has been presented in [27]. This paper 
presents a general framework and shows how decomposable functions like min, 
max, average, count and sum can be computed over such an architecture. The 
architecture is highlighted by three tools that the authors call digests, scans and 
dumps. Digests are the network parameters (e.g. count of the number of nodes) 
that are computed either continuously, periodically or in the event of a trigger. 
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Scans are invoked when the digests report a problem (e.g. a sudden drop in the 
number of nodes) to find out the energy level throughout the network. These 
two steps can guide a network administrator towards the location of the fault 
which can be debugged using the dumps (dump all the data of a single or few 
of the sensors). The other thing that this paper talks about is the distributed 
computing of some aggregate functions (mean, max, count etc.). Since all these 
functions are decomposable, the advantage is in-network aggregation of partial 
results up a tree. The leaf does not need to send all its data to the root and 
in this way vital savings can be done in terms of communication. The major 
concern though is maintaining this tree structure in such a hostile and dynamic 
environment. Also this technique would fail for numerous non-decomposable 
functions e.g. median, quantile etc. 

The above algorithm describes a way of monitoring the status of the sensor 
network itself. There are many data mining problems that need to be addressed 
in the sensor network scenario. Such an algorithm for multi-target classification 
in the sensor networks has been developed by Kotecha et al. [17] Each node 
makes local decisions and these decisions are forwarded to a single node which 
acts as the manager node. The maximum number of targets is known in apriori, 
although the exact number of targets is not known in advance. Nodes that are 
sufficiently apart are expected to provide independent feature vectors for the 
same target which can strengthen the global decision making. Moreover, for 
an optimal classifier, the number of decisions increases exponentially with the 
number of targets. Hence the authors propose the use of sub-optimal linear 
classifiers. Through real life experiments they show that their suboptimal clas- 
sifiers perform as well as the optimal classifier under mild assumptions. This 
makes such a scheme attractive for low power, low bandwidth environments. 

Frequent items mining in distributed streams is an active area of research 
[22]. There are many variants of the problem that has been proposed in 
the literature (refer to [22] for a description). Generally speaking there are 
m streams S1, S2, . ., S,. Each stream consists of items with time stamps 
< dil,  ti1 >, < di2, ti2 >, etc. Let S be the sequence preserving union of 
all the streams. If an item i E S has a count count(i) (the count may be 
evaluated by an exponential decay weighting scheme). The task is to output 
an estimate count(i) of count(i) whose frequency exceeds a certain thresh- 
old. Each node maintains a precision threshold and outputs only those items 
exceeding the precision threshold. As two extreme cases, the threshold can be 
set to very low (x 0) or very high (x 1). In the fist case, all the intermediate 
nodes will send everything without pruning resulting in a message explosion at 
the root. In the second case, the intermediate nodes will send a low number of 
items and hence no more pruning would be possible at the intermediate nodes. 
So the precision selection problem is crucial for such an algorithm to produce 
meaningful results with low communication overhead. The paper presents a 
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number of ways to select the precision values (they call it precision gradients) 
for different scenarios of load minimization. 

In the next two sections we focus our attention on two particular distributed 
data stream mining algorithms. The first algorithm that we present in Section 4 
works in large scale distributed (p2p) systems. The Bayesian network learning 
algorithm (Section 5) can be used to learn a Bayesian network model when the 
data is distributed and arriving in the form of data streams. 

4. A local algorithm for distributed data stream mining 
Having presented the general paradigm for distributed data stream mining 

and some existing algorithms, we now shift our attention to two specific algo- 
rithms that have been designed for the distributed streaming environment. The 
algorithm presented in this section works in a large-scale and dynamic envi- 
ronment e.g. a peer-to-peer environment, sensor networks and the like. While 
this algorithm is truly asynchronous and guarantees eventual correct result, it is 
restricted to the set of problems where we can define a threshold within which 
we want our result. As an example let us assume that there are N eers in a 8 network and each peer has a bit bi (0 or 1). The task is to find out if x i = l  bi > E, 
where E is a global parameter. There exists an algorithm [26] in the literature 
that can do this in the streaming scenario whereby each peer needs to contact 
only a subset of the nodes in its neighborhood. The algorithm that we discuss 
in this section shares the same philosophy - although it can perform a different 
set of data mining tasks. Going back to our example, if the problem is modified 
a little bit and we want to find out the value of xzl bi exactly, to the best 
of the authors' knowledge there exists no algorithm that can do this without 
collecting all the data. Hence the second algorithm that we have selected for 
our discussion builds a model incrementally. It first fits a model to the local 
data and determines the fitness of the model. If the model is not good enough, 
a sample of its data is taken and along with its neighbors' data used to build a 
more complex model (details in Section 5). 

4.1 Local Algorithms : definition 
Before we formally start the discussion of our algorithm let us define what 

we mean by local algorithms since this is the term that will be used throughout 
the rest of this section. 

Local algorithms are ones whose resource consumption is sometimes inde- 
pendent of system size. That is, an algorithm for a given problem is local if, 
assuming a static network and data, there exists a constant c such that for any 
size of the system N there are instances of the problem such that the time, 
CPU, memory, and communication requirements per peer are smaller than c. 
Therefore, the most appealing property of local algorithms is their extreme 
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scalability. Local algorithms have been presented in the context of graph algo- 
rithms [21][19], and recently for data mining in peer-to-peer networks [26][18] 
[25]. Local algorithms guarantee eventual correctness - when the computation 
terminates each peer computes the same result it would have computed given 
the entire data. The main advantage of this definition is that there already exists 
algorithms that follow this definition of locality. On the contrary, this defini- 
tion is disadvantageous in the sense that we do not specify precisely how many 
instances of the problem we need (that can be solved locally) in order to deem 
an algorithm local. 

There are certain characteristics that typify local algorithms. These include 
but are not limited to the ability of each node to compute the result using infor- 
mation gathered from just a few nearby neighbors, the ability to calculate the 
result in-network rather than collect all of the data to a central processor (which 
would quickly exhaust bandwidth), and the ability to locally prune redundant 
or duplicate computations. Needless to mention that these characteristics are 
extremely important in most large-scale distributed applications. 

We are now in a position to present a local Distributed Data Stream Mining 
algorithm. 

4.2 Algorithm details 
The algorithm that we are going to discuss in this section can be used for 

monitoring a data model in the distributed and streaming environment. As 
already mentioned, this algorithm requires a threshold predicate. It also assumes 
that a tree topology has been laid over the network structure. Before we present 
the details of the algorithm, let us present an overview. Let X be a dataset 
which is a union of several data streams. Let f [XI be a function that we want 
to compute on X. Since it is not always feasible to store and process the entire 
stream, we select a subset of the stream in a given time frame. We denote this 
by ~ t .  Our main task is to monitor whether f [ ~ t ]  > E, where E is a user defined 
threshold. For example, i f f  is the average we can bound the average of a set 
of vectors within this threshold. The details of this algorithm can be found in 
P51. 

In the actual algorithm description, let PI, P2, ..., P, be n peers connected 
by an arbitrary communication tree such that the set of Pi's neighbors Ni is 
known to Pi. Each peer is supplied a stream of points from Itd, where d is the 
dimension of the problem. The local average of the points at time t is denoted 
by Sit. Each peer maintains the following vectors (each of these vectors is 
weighted, we omit it in our discussion here for clarity and simplicity): 

rn Xi : the current estimate of the global average or XN (known as the 
knowledge of Pi) 

rn Xi : the last vector send by peer Pi to Pj 



Algorithms for Distributed Data Stream Mining 317 

Xj,i : the last vector received by peer Pi from Pj 

Xis : the agreement of Pi and Pj (calculated from Xi j and Xj,i) 

Xi\ : the kept knowledge of Pi and Pj (calculated from Xi and Xirli) 

Initially Xi is initialized to Sit. The first time a data is exchanged between 
Pi and Pj, it sets the vectors Xij and Xj,i. Whenever new points arrive, a 
neighbor is removed or a new neighbor comes in, Sit changes. This triggers 
the changes in the local vectors Xi, Xi\ andlor Xia. The global data mining 

xi (= XN) I I < E. We will now present different problem is to find out if 1 I , 
conditions on Xi, Xis and Xi\ that will allow us to decide if I IXN I / < E or 
I IXN I I > E .  There are two main lemmas that can be used in order to determine 
this. The first lemmas states that if for every peer Pi and each neighbor Pj 
of Pi it holds that both I [Xifi 1 1  < E and 1 lXiU 1 1  < E, then 1 lXNl 1 < E. The 
second lemma states that given d unit vectors, til . . . tid if for a specific one of 
them fi every peer Pi and each of its neighbors Pj have T& - Xirli 2 E and either 
Gi . Xi\ 2 E or Gi - Xi = - Xis then llXN 11 2 E .  

Given these two lemmas, we can now describe the algorithm that decides 
whether the L2 norm of the average vector XN is within a threshold or not. For 
simplicity we will describe the conditions assuming It2, the extension to the 
higher dimension is obvious. For a vector Xi = (z,, 3,) E IR2, the L2-norm is 
given by 

Now if we want to test if the L2-norm is greater than E or not, we want to check 
if the following condition is true: 

which is, in essence, checking if I [Xi I I lies inside or outside a circle of radius E. 
Consider Figure 14.1. The circle shown in the figure is a circle of radius E .  

The algorithm needs to check if I ]Xi I I is inside or outside the circle. In order 
to do this, it approximates the circles with a set of tangent lines as shown in 
the figure. The problem of checking inside the circle is relatively simpler - if 
a peer determines that its local I (Xi 1 I < E and for every neighbor I 1 )  < E 

and I IXiuj I I < E, then by the first lemma the peer knows that I IXN I ( < E as 
well. Hence the local estimate 1 lXi 1 1  of 1 lXN 1 1  is indeed the correct one and 
thus no message needs to be exchanged. If on the other hand a peer violates 
this condition, it needs to send a message to each violating neighbor. 

If on the other hand a peer Pi determines that I [Xi 1 1  is outside the polygon, 
it needs to check the conditions of the second lemma. Note that if two peers 
simply say that 1 [Xi[ 1 > E still the average can be lesser than E (when the two 
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Figure 14.1. (A) the area inside an E circle. (B) Seven evenly spaced vectors - ul . . . u7. 

(C) The borders of the seven halfspaces z& . x > c define a polygon in which the circle is 
circumscribed. (D) The area between the circle and the union of half-spaces. 

X,ls are in the opposite directions). So we need to check the conditions based 
on the tangent lines. Pi needs to find the first tangent plane such that a neighbor 
Pj claims that the point is outside the polygon. More precisely, it needs to 
check if there exists some u* such that l_ii . XiG 2 e. Now if Pi enters a 
state whereby 1 [Xi 1 1  > e, it does not need to send a message to its neighbors 
if they support its claim. Formally speaking Pi needs to send a message to Pj 
whenever u* . Xinj < E or U* . Xi\ < E ,  else not. 

The last case is when the Xi lies in the region between the circle and the 
polygon (the peer would find u* to be nil. In that case the peer has to resort to 
flooding. Also note that, this area can be made arbitrarily smaller using more 
number of tangent lines - the trade-off is an increased computation for each 
peer. 

4.3 Experimental results 
The above algorithm exhibits excellent accuracy and scalability. For each 

experiment we introduce new data distribution at every predefined number of 
simulator ticks. We start with a particular data distribution and choose E such 
that the average vector is within the €-range. As shown in Figure 14.2, the lower 
set of bars show the number of peers that report if the average vector is less 
than E .  After a fixed number of simulator ticks we change the data distribution 
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Figure 14.2. Quality of the algorithm with increasing number of nodes 
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Figure 14.3. Cost of the algorithm with increasing number of nodes 

and now, the I [Xi I 1's are no more inside the circle and so we have the upper set 
of bars reporting the case when 1 /Xi 1 1  is outside the circle. As we see from the 
figure, the accuracy remains almost constant. Similarly, Figure 14.3 shows the 
cost of the simple L2 algorithm. In order to eliminate a message explosion, we 
have used a leaky bucket mechanism and a peer is not allowed to send more than 
one message peer leaky bucket duration. Our unit of measurement is messages 
per peer per unit leaky bucket time (L). It can be easily seen that the number of 
messages per unit time remains constant - this typifies local algorithms - they 
are highly scalable. 
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4.4 Modifications and extensions 
We call the above operation mode of the algorithm the 'openloop mode'. It 

is useful for bounding the average vector within a threshold. If we 'close the 
loop' we can use the above simple algorithm to monitor data mining results 
(e.g. eigenstates of the data, k-means of the data etc). Generally, we need 
to define our Xi appropriately (we provide examples later) and the open loop 
algorithm would raise a flag if I \Xi I I > E. We can potentially use this flag to 
collect statistics of the data and build a new model. This model can then be 
shipped to the peers and this process can go on. If the data stops changing, the 
guarantee of the L2 algorithm is that I /Xi I I > E for every peer iff I IXN I I > E. 
Hence for long durations of stationary period we would expect to see local 
behavior of the algorithm. Only when the data distribution changes, the alert 
flag would be raised. We can then collect sample of the data from the network 
and use standard aggregation techniques such as convergecast to propagate the 
data up the tree to build a new model. As a simple example we show how this 
algorithm is possible to monitor the eigenstates of the data. We define Xi as 
the following: 

where A and 8 are the principal eigenvector and the eigenvalue of the data. A 
change in the data distribution (Sit) would change the Xi and set up an alert 
flag. This change might trigger a series of events : 

Pi will communicate with its neighbors and try to solve the problem using 
the open loop algorithm 

If the alert flag has been there for a long time, Pi sends its data to its 
parent in the tree. If the alert flag is not there any more, it is considered 
to be a false alarm 

If a peer receives data from all of its children, it sends the data to its 
parent. The root after receiving the data from everybody computes the 
new eigenstates and notifies all the peers about this new model 

The above algorithm is what we call the 'closed loop' algorithm. Since the 
model is built solely on best effort, it may be the case that the model is no longer 
good enough once it reaches all the peers. All that the algorithm will do is to 
restart the process once again and build a more up-to-date model. A similar 
algorithm for monitoring the k-means can be described by simply changing Xi 
to Sit - ci, where ci is the current centroid of the global data. 

In the next section we present an algorithm that can be used for learning a 
model from the data in the streaming scenario. 
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5. Bayesian Network Learning from Distributed Data 
Streams 

This section discusses an algorithm for Bayesian Model learning. In many 
applications the goal is to build a model that represents the data. In the previous 
section we saw how such a model can be build when the system is provided 
with a threshold predicate. If, however, we want to build an exact global 
model, development of local algorithms sometimes becomes very difficult, if 
not impossible. In this section we draw the attention of the reader to a class of 
problems which needs global information to build a data model (e.g. K-means, 
Bayesian Network,etc). The crux of these types of algorithms lies in building a 
local model, identifying the goodness of the model and then co-ordinating with 
a central site to update the model based on global information. We describe 
here a technique to learn a Bayesian network in a distributed setting. 

Bayesian network is an important tool to model probabilistic or imperfect 
relationship among problem variables. It gives useful information about the 
mutual dependencies among the features in the application domain. Such in- 
formation can be used for gaining better understanding about the dynamics of 
the process under observation. It is thus a promising tool to model customer 
usage patterns in web data mining applications, where specific user preferences 
can be modeled as in terms of conditional probabilities associated with the dif- 
ferent features. Since we will shortly show how this model can be built on 
streaming data, it can potentially be applied to learn Bayesian classifiers in 
distributed settings. But before we delve into the details of the algorithm we 
present what a Bayesian Network (or Bayes' Net or BN in short) is, and the 
distributed Bayesian learning algorithm assuming a static data distribution. 

A Bayesian network (BN) is a probabilistic graph model. It can be defined as 
a pair (6, p), where 6 = (V ,  E) is a directed acyclic graph (DAG). Here, V  is the 
node set which represents variables in the problem domain and E  is the edge set 
which denotes probabilistic relationships among the variables. For a variable 
X  E V ,  a parent of X  is a node from which there exists a directed link to X .  
Figure 14.4 is a BN called the ASIA model (adapted from [20]). The variables 
are Dyspnoea, Tuberculosis, Lung cancer, Bronchitis, Asia, X-ray, Either, and 
Smoking. They are all binary variables. The joint probability distribution of 
the set of variables in V  can be written as a product of conditional probabilities 
as follows: 

p(v)  = , p ( x  1 P ~ ( X ) ) -  (14.1) 
XEV 

In Equation (14.1) pa(X)  denotes the set of parents of node X .  The set of 
conditional distributions { P ( X  I pa(X) ) ,  X  E V )  are called the parameters of 
a Bayesian network. If variable X  has no parents, then P ( X  I pa(X) )  = P ( X )  
is the marginal distribution of X .  
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Figure 14.4. ASIA Model 

Two important issues in using a Bayesian network are: (a) learning a Bayesian 
network and (b) probabilistic inference. Learning a BN involves learning the 
structure of the network (the directed graph), and obtaining the conditional prob- 
abilities (parameters) associated with the network. Once a Bayesian network is 
constructed, we usually need to determine various probabilities of interest fkom 
the model. This process is referred to as probabilistic inference. 

In the following, we discuss a collective approach to learning a Bayesian 
network that is specifically designed for a distributed data scenario. 

5.1 Distributed Bayesian Network Learning Algorithm 
The primary steps in our approach are: 
(a) Learn local BNs (local model) involving the variables observed at each site 
based on local data set. 
(b) At each site, based on the local BN, identify the observations that are most 
likely to be evidence of coupling between local and non-local variables. Trans- 
mit a subset of these observations to a central site. 
(c) At the central site, a limited number of observations of all the variables are 
now available. Using this to learn a non-local BN consisting of links between 
variables across two or more sites. 
(d) Combine the local models with the links discovered at the central site to 
obtain a collective BN. 

The non-local BN thus constructed would be effective in identifying asso- 
ciations between variables across sites, whereas the local BNs would detect 
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associations among local variables at each site. The conditional probabilities 
can also be estimated in a similar manner. Those probabilities that involve 
only variables from a single site can be estimated locally, whereas the ones 
that involve variables from different sites can be estimated at the central site. 
Same methodology could be used to update the network based on new data. 
First, the new data is tested for how well it fits with the local model. If there 
is an acceptable statistical fit, the observation is used to update the local condi- 
tional probability estimates. Otherwise, it is also transmitted to the central site 
to update the appropriate conditional probabilities (of cross terms). Finally, a 
collective BN can be obtained by taking the union of nodes and edges of the 
local BNs and the nonlocal BN and using the conditional probabilities from the 
appropriate BNs. Probabilistic inference can now be performed based on this 
collective BN. Note that transmitting the local BNs to the central site would 
involve a significantly lower communication as compared to transmitting the 
local data. 

It is quite evident that learning probabilistic relationships between variables 
that belong to a single local site is straightforward and does not pose any ad- 
ditional difficulty as compared to a centralized approach (This may not be true 
for arbitrary Bayesian network structure. A detailed discussion of this issue can 
be found in [9]). The important objective is to correctly identify the coupling 
between variables that belong to two (or more) sites. These correspond to the 
edges in the graph that connect variables between two sites and the conditional 
probability(ies) at the associated node(s). In the following, we describe our 
approach to selecting observations at the local sites that are most likely to be 
evidence of strong coupling between variables at two different sites. The key 
idea of our approach is that the samples that do not fit well with the local mod- 
els are likely to be evidence of coupling between local and non-local variables. 
We transmit these samples to a central site and use them to learn a collective 
Bayesian network. 

5.2 Selection of samples for transmission to global site 
For simplicity, we will assume that the data is distributed between two sites 

and will illustrate the approach using the BN in Figure 14.4. The extension of 
this approach to more than two sites is straightforward. Let us denote by A 
and B, the variables in the left and right groups, respectively, in Figure 14.4. 
We assume that the observations for A are available at site A, whereas the 
observations for B are available at a different site B. Furthermore, we assume 
that there is a common feature ("key" or index) that can be used to associate a 
given observation in site A to a corresponding observation in site B. Naturally, 
V = A U B .  
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At each local site, a local Bayesiannetwork can be learned using only samples 
in this site. This would give a BN structure involving only the local variables 
at each site and the associated conditional probabilities. Let pA(.) and p ~ ( . )  
denote the estimated probability function involving the local variables. This 
is the product of the conditional probabilities as indicated by Equation (14.1). 
Since pA (x), pB (x) denote the probability or likelihood of obtaining observa- 
tion x at sites A and B, we would call these probability functions the likelihood 
functions lA(.) and ZB (.), for the local model obtained at sites A and B, respec- 
tively. The observations at each site are ranked based on how well it fits the 
local model, using the local likelihood functions. The observations at site A 
with large likelihood under lA (.) are evidence of "local relationships" between 
site A variables, whereas those with low likelihood under lA(.) are possible evi- 
dence of "cross relationships" between variables across sites. Let S(A) denote 
the set of keys associated with the latter observations (those with low likelihood 
under ZA(.)). In practice, this step can be implemented in different ways. For 
example, we can set a threshold p~ and if lA(x) 5 PA, then x E SA. The sites 
A and B transmit the set of keys SA, SB, respectively, to a central site, where 
the intersection S = SA n SB is computed. The observations corresponding to 
the set of keys in S are then obtained from each of the local sites by the central 
site. 

In a sense, our approach to learning the cross terms in the BN involves a 
selective sampling of the given dataset that is most relevant to the identification 
of coupling between the sites. This is a type of importance sampling, where we 
select the observations that have high conditional probabilities corresponding 
to the terms involving variables from both sites. Naturally, when the values 
of the different variables (features) from the different sites, corresponding to 
these selected observations are pooled together at the central site, we can learn 
the coupling links as well as estimate the associated conditional distributions. 
These selected observations will, by design, not be useful to identify the links 
in the BN that are local to the individual sites. 

Having discussed in detail the distributed Bayesian learning algorithm (as- 
suming a static data), we can now proceed with our discussion on how this 
algorithm can be modified to work with evolving data. 

5.3 Online Distributed Bayesian Network Learning 
The proposed collective approach to learning a BN is well suited for a sce- 

nario with multiple data streams. Suppose we have an existing BN model, 
which has to be constantly updated based on new data from multiple streams. 
For simplicity, we will consider only the problem of updating the BN param- 
eters, assuming that the network structure is known. As in the case of batch 
mode learning, we shall use techniques for online updating of BN parameters 
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for centralized data. In the centralized case, there exists simple techniques for 
parameter updating for commonly used models like the unrestricted multino- 
mial model. For example, let us denote by pjl = P T ( x ~  = I I pa,, = j), 
the conditional probability at node i, given the parents of node i. We can then 
obtain the estimate pijl ( k  + 1 )  of pijl at step k  + 1 as follows (see [12, Section 
51): 

where aij ( k )  = El aijl ( k )  and Nij ( k  + 1 )  = El Nijl ( k  + 1 ) .  In equation 
14.2, Nijl ( k  + 1 )  denotes the number of observations in the dataset obtained 
at time k  + 1  for which, xi = I and pa,, = j ,  and we can set aijl ( k  + 1 )  = 
aijl ( k )  + Nijl ( k  + 1). Note that Nijl ( k )  are a set of sufficient statistics for the 
data observed at time k .  

For online distributed case, parameters for local terms can be updated using 
the same technique as in a centralized case. Next, we need to update the 
parameters for the cross-links, without transmitting all the data to a central site. 
Again we choose the samples with low likelihood in local sites and transmit 
them to a central site. This is then used to update the cross-terms at the central 
site. We can summarize our approach by the following steps: 

1 Learn an initial collective Bayesian network from the first dataset ob- 
served (unless a prior model is already given). Thus we have a local BN 
at each site and a set of cross-terms at the central site. 

2 At each step k :  

= Update the local BN parameters at each site using equation 14.2. 

rn Update the likelihood threshold at each local site, based on the 
sample mean value of the observed likelihoods. This is the threshold 
used to determine if a sample is to be transmitted to a central site 
(see Section 5.2). 

Transmit the low likelihood samples to a central site. 

rn Update the parameters of the cross-terms at the central site. 

rn Combine the updated local terms and cross terms to get an updated 
collective Bayesian network. 

3 Increment k  and repeat step (2) for the next set of data. 

This section concludes our discussion on the distributed streaming Bayesian 
learning algorithm. In the following, we point out some of the experimental 
verifications of the proposed algorithm. 
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5.4 Experimental Results 
We tested our approach on two different datasets. A small real web log dataset 

was used for batch mode distributed Bayesian learning. This was used to test 
both structure and parameter learning. We also tested our online distributed 
learning approach on a simulated web log dataset. Extensive examples for 
batch mode learning (using both real and simulated web log data), demonstrat- 
ing scalability with respect to number of distributed sites have been presented 
elsewhere [8, 91. In the following, we present our results for BN parameter 
learning using online data streams. 

We illustrate the results of online BN parameter learning assuming the net- 
work structure is known. We use the model shown in Figure 14.5. The 32 nodes 
in the network are distributed among four different sites. Nodes 1, 5, 10, 15, 
16,22,23,24,30, and 31 are in site A. Nodes 2,6,7, 11, 17,18,25,26, and 32 
are in site B. Nodes 3,8, 12, 19,20, and 27 are in site C. Nodes 4,9, 13, 14,2 1, 
28, and 29 are in site D. A dataset with 80,000 observations was generated. We 
assumed that at each step k, 5,000 observations of the data are available (for a 
total of 16 steps). 

We denote by Bbe, the Bayesian network obtained by using all the 80,000 
samples in batch mode (the data is still distributed into four sites). We denote 
by Bol (k), the Bayesian network obtained at step k using our online learning 
approach and by Bb,(k), the Bayesian network obtained using a regular batch 
mode learning, but using only data observed upto time k. We choose three 
typical cross terms (nodes 12,27, and 28) and compute the KL distance between 
the conditional probabilities to evaluate the performance of online distributed 
method. The results are depicted in Figure 14.6. 

Figure 14.6 (left) shows the KL distance between the conditional probabilities 
for the networks Bol(k) and Bbe for the three nodes. We can see that the 
performance of online distributed method is good, with the error (in terms 
of KL distance) dropping rapidly. Figure 14.6 (right) shows the KL distance 
between the conditional probabilities for the networks Bba(k) and BO1 for the 
three nodes. We can see that the performance of a network learned using our 
online distributed method is comparable to that learned using a batch mode 
method, with the same data. 

6. Conclusion 
In this chapter we have surveyed the field of distributed data stream mining. 

We have presented a brief survey of field, discussed some of the distributed 
data stream algorithms, their strengths and weaknesses. Naturally, we have 
elucidated one slice through this field - the main topic of our discussion in this 
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Figure 14.5. Bayesian network for online distributed parameter learning 

chapter was algorithms for distributed data stream mining. Many important 
areas such as system development, human-computer interaction, visualization 
techniques and the like in the distributed and streaming environment were left 
untouched due to lack of space and limited literature in the areas. 

We have also discussed in greater detail two specific distributed data stream 
mining algorithms. In the process we wanted to draw the attention of the readers 
to an emerging area of distributed data stream mining, namely data stream min- 
ing in large-scale peer-to-peer networks. We encourage the reader to explore 
distributed data stream mining in general. All the fields - algorithm develop- 
ment, systems development and developing techniques for human-computer 
interaction are still at a very early stage of development. On an ending note, the 
area of distributed data stream mining offers plenty of room for development 
both for the pragmatically and theoretically inclined. 
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Figure 14.6. Simulation results for online Bayesian learning: (left) KL distance between the 
conditional probabilities for the networks B,l (k) and Bb, for three nodes (right) KL distance 
between the conditional probabilities for the networks BO1 ( k )  and Bb, for three nodes 



References 

[I]  C Aggarwal. A framework for diagnosing changes in evolving data 
streams. In ACM SIGMOD '03 International Conference on Management 
of Data, 2003. 

[2] C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for clustering 
evolving data streams. In VLDB conference, 2003. 

[3] C. Aggarwal, J. Han, J. Wang, and P. S. Yu. On demand classification of 
data streams. In KDD, 2004. 

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models 
and issues in data stream systems. In In  Principles of Database Systems 
(PODS '02), 2002. 

[5] B. Babcock and C. Olston. Distributed top-k monitoring. In ACM SIG- 
MOD '03 International Conference on Management of Data, 2003. 

[6] S. Ben-David, J. Gehrke, and D. Kifer. Detecting change in data streams. 
In VLDB Conference, 2004. 

[7] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a scalable contin- 
uous query system for Internet databases. In ACM SIGMOD '00 Interna- 
tional Conference on Management of Data, 2000. 

[8] R. Chen, K. Sivakumar, and H. Kargupta. An approach to online bayesian 
learning from multiple data streams. In Proceedings of the Workshop 
on Ubiquitous Data Mining (5th European Conference on Principles 
and Practice of Knowledge Discovery in Databases), Freiburg, Germany, 
September 200 1. 

[9] R. Chen, K. Sivakumar, and H. Kargupta. Collective mining of bayesian 
networks from distributed heterogeneous data. Knowledge and Informa- 
tion Systems, 6: 164-1 87,2004. 



330 DATA STREAMS: MODELS AND RCGORITHMS 

[lo] P. Gibbons and S. Tirthapura. Estimating simple functions on the union 
of data streams. In ACM Symposium on Parallel Algorithms and Archi- 
tectures, 200 1. 

[ l l ]  S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data 
streams. In IEEE Symposium on FOCS, 2000. 

[12] D. Heckerman. A tutorial on learning with Bayesian networks. Technical 
Report MSR-TR-95-06, Microsoft Research, 1995. 

[13] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data 
streams. Technical Report TR-1998-011, Compaq System Research Cen- 
ter, 1998. 

[14] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data 
streams. In SIGKDD, 200 1. 

[15] R. Jin and G. Agrawal. Efficient decision tree construction on streaming 
data. In SIGKDD, 2003. 

[16] H. Kargupta and K. Sivakumar. Existential Pleasures of Distributed Data 
Mining. Data Mining: Next Generation Challenges and Future Directions. 
AAAIIMIT press, 2004. 

[17] J. Kotecha, V. Ramachandran, and A. Sayeed. Distributed multi-target 
classification in wireless sensor networks. IEEE Journal of SelectedAreas 
in Communications (Special Issue on Self-organizing Distributed Collab- 
orative Sensor Networks), 2003. 

[18] D. Krivitski, A. Schuster, and R.Wolff. A local facility location algorithm 
for sensor networks. In Proc. of DCOSS'OS, 2005. 

[19] S. Kutten and D. Peleg. Fault-local distributed mending. In Proc. of the 
ACM Symposium on Principle of Distributed Computing (PODC), pages 
20-27, Ottawa, Canada, August 1995. 

[20] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabil- 
ities on graphical structures and their application to expert systems (with 
discussion). Journal of the Royal Statistical Society, series B, 50: 157-224, 
1988. 

[21] N. Linial. Locality in distributed graph algorithms. SIAM Journal of 
Computing, 2 1 : 193-20 1, 1992. 

[22] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (re- 
cently) frequent items in distributed data streams. In International Con- 
ference on Data Engineering (ICDE 'OS), 2005. 



REFERENCES 331 

[23] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries 
over distributed data streams. In ACM SIGMOD '03 International Con- 
ference on Management of Data, 2003. 

[24] J. Widom and R. Motwani. Query processing, resource management, and 
approximation in a data stream management system. In CIDR, 2003. 

[25] R. Wolff, K. Bhaduri, and H. Kargupta. Local L2 thresholding based data 
mining in peer-to-peer systems. In Proceedings of S I N  International 
Conference in Data Mining (SDM), Bethesda, Maryland, 2006. 

[26] R. Wolff and A. Schuster. Association rule mining in peer-to-peer systems. 
In Proceedings of ICDM'03, Melbourne, Florida, 2003. 

[27] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring 
wireless sensor networks. In Proceedings of the First IEEE International 
Workshop on Sensor Network Protocols and Applications, 2003. 



Chapter 15 

A SURVEY OF STREAM PROCESSING 
PROBLEMS AND TECHNIQUES 
IN SENSOR NETWORKS 

Sharmila Subramaniarn, Dimitrios Gunopulos 
Computer Science and Engineering Dept. 
University of California at Riverside 
Riverside, CA 92521 

Abstract Sensor networks comprise small, low-powered and low-cost sensing devices that 
are distributed over a field to monitor a phenomenon of interest. The sensor nodes 
are capable of communicating their readings, typically through wireless radio. 
Sensor nodes produce streams of data, that have to be processed in-situ, by the 
node itself, or to be transmitted through the network, and analyzed offline. In 
this chapter we describe recently proposed, efficient distributed techniques for 
processing streams of data collected with a network of sensors. 

Keywords: Sensor Systems, Stream Processing, Query Processing, Compression, Tracking 

Introduction 
Sensor networks are systems of tiny, low-powered and low-cost devices dis- 

tributed over a field to sense, process and communicate information about their 
environment. The sensor nodes in the systems are capable of sensing a phe- 
nomenon and communicating the readings through wireless radio. The memory 
and the computational capabilities of the nodes enable in-site processing of the 
observations. Since the nodes can be deployed at random, and can be used 
to collect information about inaccessible remote domains, they are considered 
as very valuable and attractive tools for many research and industrial applica- 
tions. Motes is one example of sensor devices developed by UC Berkeley and 
manufactured by Crossbow Technology Inc. [13]. 
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Sensor observations form streams of data that are either processed in-situ 
or communicated across the network and analyzed offline. Examples of sys- 
tems producing streams of data include environmental and climatological ([39]) 
monitoring where phenomena such as temperature, pressure and humidity are 
measured periodically (at various granularities). Sensors deployed in building 
and bridges relay measurements of vibrations, linear deviation etc. for moni- 
toring structural integrity (15 11). Seismic measurements, habitat monitoring ( 
[7,3 8]), data from GPS enabled devices such as cars and phones and surveillance 
data are further examples. Surveillance systems may include sophisticated sen- 
sors equipped with cameras and UAVs but nevertheless they produce streams 
of videos or streams of events. In some applications, raw data is processed in 
the nodes to detect events, defined as some suitable function on the data, and 
only the streams of events are communicated across the network. 

The focus ofthis chapter is to describe recently proposed, efficient distributed 
techniques for processing streams of data that are collected from a sensor net- 
work. 

1. Challenges 
Typically a large number of sensors nodes are distributed spanning wide 

areas and each sensor produces large amount of data continuously as obser- 
vations. For example, about 10,000 traffic sensors are deployed in California 
highways to report traffic status continuously. The energy source for the nodes 
are either AA batteries or solar panels that are typically characterized by lim- 
ited supply of power. In most applications, communication is considered as the 
factor requiring the largest amount of energy, compared to sensing ([41]). The 
longevity of the sensor nodes is therefore drastically reduced when they com- 
municate raw measurements to a centralized server for analysis. Consequently 
data aggregation, data compression, modeling and online querying techniques 
need to be applied in-site or in-network to reduce communication across the 
network. Furthermore, limitations of computational power and inaccuracy and 
bias in the sensor readings necessitate efficient data processing algorithms for 
sensor systems. 

In addition, sensor nodes are prone to failures and aberrant behaviors which 
could affect network connectivity and data accuracy severely. Algorithms pro- 
posed for data collection, processing and querying for sensor systems are re- 
quired to be robust and fault-tolerant to failures. Network delays present in 
sensor systems is yet another problem to cope up with in real-time applications. 

The last decade has seen significant advancement in the development of 
algorithms and systems that are energy aware and scalable with respect to 
networking, sensing, communication and processing. In the following, we 
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describe some of the interesting problems in data processing in sensor networks 
and give brief overview of the techniques proposed. 

2. The Data Collection Model 
We assume a data collection model where the set of sensors deployed over a 

field communicate over a wireless ad-hoc network. This scenario is typically 
applicable when the sensors are small and many. The sensors are deployed 
quickly, leaving no or little time for a wired installation. Nevertheless, there 
are also many important applications where expensive sensors are manually 
installed. A typical example is a camera based surveillance system where 
wired networks can also be used for data collection. 

3. Data Communication 
The basic issue in handling streams fiom sensors is to transmit them, either as 

raw measurements or in a compressed form. For example, the following query 
necessitates transmission of temperature measurements from a set of sensors to 
the user, over the wireless network. 

"Return the temperature measurements of all the sensors in the subregion R 
every 10s, for the next 60 minutes " 

Typically, the data communication direction is from multiple sensor nodes 
to a single sink node. Moreover, since the stream of measurements observed by 
sensors are that of a common phenomena, we observe redundancy in the data 
communicated. For example, consider the following task posed from the sink 
node to the system: 

Due to the above characteristics, along with limited availability of power, 
the end-to-end communication protocols available for mobile ad-hoc networks 
are not applicable for sensor systems. The research community has therefore 
proposed data aggregation as the solution wherein data from multiple sources 
are combined, processed within the network to eliminate redundancy and routed 
through the path that reduces the number of transmissions. 

Energy-aware sensing and routing has been a topic of interest over the re- 
cent years to extend the lifetime of the nodes in the network. Most of the 
approaches create a hierarchical network organization, which is then used for 
routing of queries and for communication between the sensors. [27] proposed 
a cluster based approach known as LEACH for energy-efficient data transmis- 
sion. Cluster-head nodes collect the streaming data from the other sensors in 
the cluster and apply signal processing functions to compress the data into a 
single signal. As illustrated in Figure 15.1, cluster heads are chosen at random 
and the sensors join the nearest cluster head. Now, a sensor communicates its 
stream data to the corresponding cluster head, which in turn takes the respon- 
sibility of communicating them to the sink (possibly after compressing). A 
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Figure 15.1. An instance of dynamic cluster assignment in sensor system according to LEACH 
protocol. Sensor nodes of the same clusters are shown with same symbol and the cluster heads 
are marked with highlighted symbols. 

. 
Sink Interest Ropagation 

- - - - - - - -> Initial Gradients setup - Reinforced Path 

Source Location ( 37,45 ) 
Target Detected 

Figure 15.2. Interest Propagation, gradient setup and path reinforcement for data propagation 
in directed-dzffusion paradigm. Event is described in terms of attribute value pairs. The figure 
illustrates an event detected based on the location of the node and target detection. 

different approach is the Directed Dzjiusion paradigm proposed by [28] which 
follows a data centric approach for routing data from sources to the sink sensor. 
Directed diffusion uses a publish-subscribe approach where the inquirer (say, 
the sink sensor) expresses an interest using attribute values and the sources that 
can serve the interest reply with data (Figure 15.2). As the data is propagated 
toward the sink, the intermediate sensors cache the data to prevent loops and 
eliminate duplicate messages. 

Among the many research works with the goal of energy-aware routing, 
Geographic Adaptive Fidelity (GAF) approach proposed by [49] conserves 
energy from the point of view of communication, by turning off the radios of 
some of the sensor nodes when they are redundant. The system is divided into 
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Figure 15.3. Sensors aggregating the result for a MAX query in-network 

a virtual grid using geographic location information and only one sensor per a 
cell in the grid is activated to route packets. ASCENT by [8] and STEM by 
[44] are examples of other available sensor topology control schemes. 

Data aggregation is also an integral part of query processing. The results 
of the posed queries are communicated across the network with in-network 
aggregation. We discuss more about this in Section 4. 

4. Query Processing 
In the common query frameworks followed in sensor systems, data collection 

is driven by declarative queries (examples of such systems include COUGAR 
([54]) and TAG ([35])). Users pose declarative queries over the data generated 
by the sensors. For example, the SQL-like query corresponding to the example 
task discussed in Section 3 is as follows. 

SELECT S.temperature 
FROM Sensor S 
WHERE S.loc IN R 
DURATION 3600s 
EVERY 10s 

The simplest scheme for evaluating such queries on sensor data is to transmit 
all the data to a centralized database, which can then be used for answering user 
queries. To improve on this scheme, [6],  [34] and [53] suggested the concept 
of viewing sensor system as a distributed database and proposed incorporating 
a query layer in the system. The sensors in the system were now query-aware, 
which paved way for the following. Firstly, the sensors communicated the 
measurements on-demand i.e., if they satisfied the predicate of the query. Sec- 
ondly, in-network processing of query results was now possible in query-aware 
sensors. 
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A direct implementation of the distributed database techniques are not viable 
in sensor systems due to their communication and computation constraints. 
Therefore, [6] and [34] studied the characteristics and challenges of sensor 
databases and the requirements of a good query plan for such systems. The 
COUGAR framework proposed by [53] aimed at reducing energy usage by 
generating efficient query plans for in-network query processing. The authors 
proposed a general framework for in-network query processing (in [54]) where 
the query is decomposed into flow blocks and a leader node from a set of 
coordinated nodes collects the query results of a block. 

4.1 Aggregate Queries 
The class of queries that has received interest in sensor systems is Aggregate 

Queries. Recently various techniques are proposed to efficiently process aggre- 
gate queries such as MIN, COUNT and AVG in sensor systems while reducing 
power consumption. An example of a simple query would be: 

"Return the maximum of the temperature measurements obtained from all 
sensors located within coordinates [O, 100,100,0]." 

The properties of the aggregate bc t ions  enables distributed processing of 
partial data in-network, which can be combined to produce results for the posed 
queries. Such optimizations reduce energy consumption for query processing 
by orders of magnitudes. For example, Figure 15.3 shows a routing paradigm 
where MAX of the observations at the sensors are evaluated efficiently by 
computing the MAX of different groups of sensors, and communicating only 
the results to the sink sensor. 

One of the first tools for processing aggregate queries in sensor systems, in 
a distributed and efficient manner, is TAG, presented by [35]. In TAG, queries 
posed by users are propagated from a base station into the network, piggyback- 
ing the existing network protocol. Aggregate results are communicated back 
to the base station up a spanning tree, with each sensor combining its result 
with the results obtained from its children. Later, [25] studied the implemen- 
tation of TAG framework for various sensing applications such as sensor data 
summarization, vehicle tracking and topographic mapping. 

Various improvements and application specific modifications have been pro- 
posed recently based on the above query-tree framework suggested for data 
aggregation and query processing. We give a brief overview of some of the 
techniques in the following. 

Extending the query-tree framework and the work by [40], [14] presented 
a framework for in-network data aggregation to evaluate aggregate queries in 
error-tolerant applications. According to this framework, the nodes of the query 
tree apply their error filters to the partial aggregates of their subtrees, and sup- 
press messages from being communicated to the sink (see Figure 15.4). In ad- 
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Global Error at Sink = 20 

Figure 15.4. Error filter assignments in tree topology. The nodes that are shown shaded are 
the passive nodes that take part only in routing the measurements. A sensor communicates a 
measurement only if it lies outside the interval of values specified by Ei i.e., maximum permitted 
error at the node. A sensor that receives partial results from its children aggregates the results 
and communicates them to its parent after checking against the error interval 

Level 1 

Level 2 

Query Propagation 

Partial Result Propagation 

Figure 15.5. Usage of duplicate-sensitive sketches to allow result propagation to multiple par- 
ents providing fault tolerance. The system is divided into levels during the query propagation 
phase. Partial results from a higher level (level 2 in the figure) is received at more than one node 
in the lower level (Level 1 in the figure) 

dition, the potential gain of increasing the error threshold of nodes is estimated 
statistically, to guide the allocation of error filters. In another extension, [45] 
illustrate that the energy consumption of TAG and COUGAR framework can 
be reduced M e r  through group-aware network configuration, where sensors 
belonging to same group are clustered along the same path, and by suppressing 
transmissions of measurements with temporal coherency. 
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Focusing on duplicate sensitive queries such as SUM and COUNT, [12] 
proposed a scalable algorithm that is fault-tolerant to sensor failure and com- 
putes approximate answers for the aggregate queries. The duplicate-insensitive 
sketches used in this work allows communication of results to multiple parents, 
as illustrated in Figure 15.5, to provide fault tolerance. Recently, [47] extended 
the class of queries supported to include quantiles, distribution of data in the 
form of histograms and most frequent items. 

4.2 Join Queries 
Certain application such as tracking and monitoring a moving object requires 

execution of join queries over data streams produced at different sensors. For 
example, consider a query of the form 

"Return the objects that were detected in both regions R l  and R2". 
To evaluate the query, streams of observations from the sensors in regions 

R1 and R2 are joined to determine if an object was spotted in both the regions. 
The applications ofjoin queries in sensor networks were first discussed in the 

COUGAR framework ([54]) which suggested making an informed decision, 
based on the selectivity of the join operator, to compute the join results in- 
network. Studying join queries in detail, [5] proposed a method for effective 
join operator placement. In this, the authors assume long running queries and 
propose a technique where the sensors continuously refine the placement of 
join operator so as to minimize data transmissions over the network. However, 
the method is restricted to processing queries over pairs of sensors. Recently, 
[37] proposed REED, an extension of tinyDB for multi-predicate join queries, 
which can efficiently handle joins queries over multiple sensors and joins of 
sensor data with external tables. 

A non-blocking form of join processing is sliding time window join where 
a time window over the timestamps of the tuples is given as a constraint, in 
addition to the join conditions. This is studied as a natural way to handle joins 
on infinite streams such as those from sensors. For example, 

"Return the objects that were detected by both sensors Sl and S2 and where 
window(S1, S2) = w " 

poses an additional constraint that the timestamps of the values from S1 
and S2 should be within window w of time from each other to satisfy the 
query predicate. [23] studied various forms of such window join queries and 
proposed backward and forward evaluation algorithms BEW-join and FEW- 
join for executing them. However, the algorithms proposed can potentially 
produce an unordered stream of tuples as result. The authors address this 
problem (in [24]) and propose and analyze several methods to provide in-order 
execution of join queries over sensor streams. 
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4.3 Top-k Monitoring 
Another interesting class of problem is to report the lc highest ranked answers 

to a given query. An example to a top-k query in sensor system would be: 
"Fhich sensors have reported the highest average temperature readings over 

the past month? ". 
The general problem of monitoring top-k values from streams that are pro- 

duced at distributed locations is discussed by [3]. The authors propose a tech- 
nique in which arithmetic constraints are maintained at the stream sources to 
ensure the validity of the most recently communicated top-lc answers. The 
approach provides answers within a user specified error tolerance and reduces 
overall communication between the sources. A different approach to providing 
solution for top-lc queries in sensor systems following hierarchical topology is 
TJA(Thresho1d Join Algorithm), proposed by [57]. The algorithm consist of 
the initial phase of setting lower bound for the top-k results in the hierarchies, 
followed by a join phase that collects the candidate sets in a bottom-up manner. 
With a fixed number of round trips, in-network processing and fewer readings 
communicated to the sink, the method conserves energy and reduces delay in 
answering the query. 

Recently, [48] proposed a technique to answer top-lc queries approximately 
by keeping samples of past sensor readings. When querying on a large sample 
set, the nodes that appear frequently in the answers form a pattern that can assist 
in the estimation of optimum query plan. Based on this observation, the authors 
propose a general framework of devising query plans with user defined energy 
budget, and applies it to answer top-lc queries approximately. 

4.4 Continuous Queries 
Sensors deployed for monitoring interesting changes in the environment are 

often required to answer queries continuously. For instance, motion or sound 
sensors might be used to automatically turn lights on by evaluating continuous 
queries. 

When more than one continuous query is evaluated over the readings, we 
can optimize the storage and computation by taking advantage of the fact that 
the sources of the query and their partial results could overlap. Continuously 
Adaptive Continuous Query (CACQ), implemented over Telegraph query pro- 
cessing engine, is an adaptive eddy-based design proposed by [33] which amor- 
tized query processing cost by sharing the execution of multiple long running 
queries. As a related work, we find that the approach proposed by [40] for 
providing approximate answers for continuous queries is applicable in certain 
sensor based applications. 

In long running queries, streams from different sensors are continuously 
transmitted to other sensors where the query operator is applied on the data. 
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Since the rate at which the data is produced by the operator varies over time, 
a dynamic assignment of operators to nodes reduces communication costs. To 
achieve this, [5] have worked on optimizing in-network placement of query 
operators such as aggregate, filtering, duplicate elimination and correlation, 
where the nodes continuously refine the operator placement. 

In many applications in sensor systems, the user is more interested in a 
macroscopic description of the phenomenon being observed, rather than the 
individual observations. For example, when sensors are deployed to detect 
fire hazards, the state of the system is either 'Safe' or 'Fire Alarm'. Specific 
queries regarding the state can be posed to the individual sensors once the state 
is detected. Recently, [22] have proposed an approach for state monitoring that 
comprises two processes. The first process is the learningprocess where sensor 
readings are clustered with user constraints and the clusters are used to define 
rules describing the state of the system. In the state monitoring process the 
nodes collaborate to update the state of the network by applying the rules to the 
sensor observations. 

5. Compression and Modeling 
In certain applications in sensor systems the type of the query or the charac- 

teristics of interesting events is not known apriori. In such scenarios, summaries 
of the sensor data are stored either in-site or in-network or at the base station, 
and are used for answering the queries. For example, [18,19] proposed storage 
of wavelet based summaries of sensor data, in-network, at various resolutions 
(spatial) of the system. Progressive aging of summaries and load sharing tech- 
niques are used to ensure long term storage and query processing. 

A relevant problem is to compress the historical data from multiple streams 
in order to transmit them to the base station. Recently, [15] proposed the Self 
Based Regression (SBR) algorithm that provides an efficient base-signal based 
technique to compress historical data in sensors. The base-signals that capture 
the prominent features of the stream are extracted from the data and are trans- 
mitted to the base station, to aid in future reconstructions of the stream. ALVQ 
(Adaptive Linear Vector Quantization) algorithm proposed by [3 11 improves 
on the SBR algorithm by increasing the precision of compression and reduc- 
ing the bandwidth consumption by compressing the update of the codebook. 
In a different approach to compressing sensor streams, [43] assume linearity 
of data over small windows and evaluate a temporal compression scheme for 
summarizing micro-climactic data stream. 

It is clear that all the research contributions discussed here have a common 
goal: to reduce power consumption of the sensors. Modeling the distribution 
of the data streams comes in handy when there is a requirement to reduce the 
power consumption further. This approach is highly recommended in acqui- 



A Survey of Stream ProcessingProblems and Techniquesin Sensor Networks 343 

Figure 15.6. (a) Two dimensional Gaussian model of  the measurements from sensors S1 and 
S2 (b) The marginal distribution of the values of  sensor SI, given S2: New observations from 
one sensor is used to estimate theposterior density of  the other sensors 

sitional systems where considerable energy is consumed even for sensing the 
phenomenon, apart from the energy consumed in transmitting the values. User 
queries are answered based on the models, by prediction, and more data is 
acquired from the system if the prediction is not accurate. The accuracy of 
the predictions thus serve as a guidance to determine which sensors should 
be queried to update and refine the models, so that the future queries can be 
answered more accurately. 

5.1 Data Distribution Modeling 
Over the recent years, there are many research undertakings in modeling of 

sensor data. [20] proposed an interesting framework for in-network modeling 
of sensor data using distributed regression. The authors use linear regression 
to model the data and the coefficients of kernel-based regression models are 
computed in-network. This technique exploits the temporal redundancy (the 
redundancy in readings from a sensor over time) and spatial redundancy (sensors 
that are close to each other measure similar values) that is common in sensor 
streams. In [16], a multivariate Gaussian model over the sensors is used for 
answering queries pertaining to one or more of the sensors. For example, 
consider a range query that asks: 

"Is the value of a sensor S1 within the range [a, b]?" 
Instead of querying the sensor to obtain its reading for answering the query, 

it is now possible to compute the probability P(S1 E [a, b])  by marginalizing 
the multivariate distribution over the density over only S1. If this is very high, 
the predicate is true and the predicate is false if it is very low. Otherwise, the 
sensor is required to transmit more data and the model is updated. In addition 
to updating the model with the new observations transmitted, the model is also 
updated over time with one or more transition models. 
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Figure 15.7. Estimation of probability distribution of the measurements over sliding window 

Measurements of low-cost attributes that are correlated to an expensive pred- 
icate can be used to predict the selectivity (i.e., the set of sensors to query) of 
the expensive predicate. This observation is utilized in [17] to optimize query 
plans for expensive predicates. 

5.2 Outlier Detection 
Sensors might record measurements that appear to deviate significantly from 

the other measurements observed. When a sensor reports abnormal observa- 
tions, it might be due to an inherent variation in the phenomenon being observed 
or due to an erroneous data measurement procedure. In either case, such out- 
liers are interesting and has to be communicated across. [42] proposed an 
approach for detecting outliers in a distributed manner, through non-parametric 
modeling of sensor data. Probability distribution models of the data seen over a 
recent window are computed based on kernel density estimators, as illustrated 
in Figure 15.7. Since such models obtained at various sensors can be combined 
efficiently, this approach makes it possible to have models at different hierar- 
chical levels of communication. The models are then used to detect outliers at 
various levels. 

Figure 15.8 graphically depicts the trade-offs between the model size, the 
desired accuracy of results and the resource consumption common in sensor 
systems. As seen in the figure, a sensor reporting measurements from dynamic 
environment such as sounds from outdoor requires large model size and more 
number of message updates, compared to a sensor reporting indoor tempera- 
tures. 
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Figure 15.8. Trade-offs in modeling sensor data 

6. Application: Tracking of Objects using Sensor 
Networks 

As seen in the above sections, sensor systems are potentially useful in vari- 
ous applications ranging from environmental data collection to defense related 
monitoring. In this section, we briefly describe some of the recent research 
works that study surveillance and security management in sensor systems. In 
particular, we look at tracking techniques where data from sensors are processed 
online, in a real-time fashion, to locate and track moving objects. Tracking of 
vehicles in battlefield and tracking of spread of wildfire in forests are some of 
the examples. Typically, sensor nodes that are deployed in a field are equipped 
with the technology to detect the interesting objects (or in general, events). 
The sensors that detect the event collaborate with each other to determine the 
event's location and predict its trajectory. Power savings and resilience Erom 
failures are important factors to consider while devising an efficient strategy for 
tracking events. 

One of the first works on tracking in sensor systems is by [60] who studied 
the problem of tracking a mobile target using an information theoretic approach. 
According to this method, the sensor that detects the target estimates the target 
state, determines the next best sensor and hands off the state information to it. 
Thus, only a single node is used to track the target at any time and the routing 
decision is made based on information gain and resource cost. 

Considering the problem in a different setting, [2] proposed a model for 
tracking a moving object with binary sensors. According to this, each sensor 
node communicates one bit of information to a base station. The bit denotes 
whether an object is approaching it or moving away from it. The authors 
propose a filtering style approach for tracking the object. The method involves 
a centralized computational structure which is expensive in terms of energy 
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consumption. In the method proposed by [lo], the network is divided into 
clusters and the cluster heads calculates the target location based on the signal 
readings from the other nodes in the cluster. 

The problem of tracking multiple objects has been studied by [26] where the 
authors propose a method based on stochastic approaches for simultaneously 
tracking and maintaining identities of multiple targets. Addressing the issue 
of multiple-target identity management, 1461 introduced identity belief matrix 
which is a doubly stochastic matrix forming a description of the identity in- 
formation of each target. The matrix is computed and updated in a distributed 
fashion. 

Apart from the above works which present tracking techniques per se, we 
also see few methods that employ some communication framework in order to 
track targets. Dynamic Convoy Tree-based Collaboration (DCTC) framework 
proposed by [59] relies on convoy tree which includes the sensors around the 
moving target. As the target moves, the tree dynamically evolves by adding and 
pruning some nodes. The node close to the target is the root of the tree where 
all the sensing data is aggregated. 

[32] discuss a group management method for track initiation and manage- 
ment in target tracking application. On detecting the target, sensors send mes- 
sage to each other and a leader is selected among them based on the time stamp 
of the messages. All sensors that detect the target abandon detection and join 
the group of the selected leader and the leader gets the responsibility to maintain 
the collaborative group. 

Predictive target tracking based on a cluster based approach is presented by 
[52] where the target's future location is predicted based on the current location. 
In order to define the current location, the cluster head aggregates the informa- 
tion from three sensors in its cluster. Then the next location is predicted based 
on an assumption that it obeys two dimensional Gaussian distribution. [50] 
proposed a prediction-based energy saving scheme for reducing energy con- 
sumption for object tracking under acceptable conditions. The prediction mod- 
els is built on the assumption that the movement of the object usually remains 
constant for a certain period of time. The heuristics for wake-up mechanism 
considers only the predicted destination node, or all the nodes on the route 
from current node to destination node, or all the neighbors of all the nodes 
along the predicted route. The errors in the estimate of the target's movement 
are corrected by filtering and probabilistic methods, thus accurately defining 
the sensors to be notified. 

Recently, [2 11 proposed a two level approach for tracking a target by predict- 
ing its trajectory. In this scheme, a low-level loop is executed at the sensors to 
detect the presence of target and estimate its trajectory using local information, 
whereas the global high level loop is used to combine the local information 
and predict the trajectory across the system. The system is divided into cells as 
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Figuve 15.9. Tracking atarget. The leader nodes estimate the probability of the target's direction 
and determines the next monitoring region that the target is going to traverse. The leaders of the 
cells within the next monitoring region are alerted 

shown in Figure 15.9. Kalman filters are used for predicting the target location 
locally and the estimations are combined by the leaders of the cells. The proba- 
bility distribution function of the target's direction and location are determined 
using Kernel functions and the neighboring cell leaders are alerted based on the 
probability estimation. [I, 561 

7. Summary 
In this chapter we reviewed recent work on distributed stream processing 

techniques for data collected by sensor networks. We have focused on the sensor 
monitoring paradigm, where a large set of inexpensive sensors is deployed for 
surveillance or monitoring of events of interest. 

The large size of data and the distributed nature of the system necessitate 
the development and use of in-network storage and analysis techniques; here 
we have focused on the analysis part. However, future systems will operate 
with larger more expensive and capable sensors (for example video cameras). 
Consequently, future research work will have to address important and funda- 
mental issues on how to efficiently stoe, index, and analyze large datasets in 
sensor networks. 

The development of efficient techniques for local (in the sensor) storage of 
the data (perhaps using inexpensive and widely available flash memory), as well 
as for distributed data storage, and the development and deployment of resource 
management techniques to manage the resources of the sensor network will be 
very important in addressing these issues. 
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